期刊文献+

基于模拟退火算法的客运站到发线占用优化研究 被引量:8

Based on Simulated Annealing Algorithm Passenger Station Occupied Optimization
下载PDF
导出
摘要 结合客运站旅客列车在站技术作业的特点,以出发旅客列车正点为目标并且兼顾到发线固定使用方案和高等级列车优先接发建立客运站到发线占用优化模型。该模型为混合0-1整数规划模型,属于NP问题,直接求解较困难。文中用模拟退火算法(SA)设计求解方案,并用实例对模型和算法进行验证,生成到发线使用方案,说明其优化效果明显。 This paper establishes a passenger station occupied optimization model based on the characteristics of technical work of terminal passenger for the goal of passenger train is in time and also lines fixed-use and priority to sending and receiving high-grade trains;The model belongs to mixed 0-1 integer programming model and is NP problem,the more difficult to solve directly.This paper use simulated annealing(SA) to solve.The optimization effect is obvious by verifying the model and algorithm with an example.
作者 高建
出处 《交通科技与经济》 2011年第4期73-75,共3页 Technology & Economy in Areas of Communications
关键词 客运站 到发线 优化 模拟退火算法 passenger station arrival-departure lines optimization simulated annealing algorithm
  • 相关文献

参考文献8

二级参考文献14

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.. 被引量:131
  • 2刘勇 康立山 陈毓屏.非数值并行算法(第一册)模拟退火算法[M].北京:科学出版社,1994.. 被引量:1
  • 3[5]Katta G. Murty. The Algorithm for Ranking all Assignmints in Order of Increasing Cost [ J ]. Operations Research,1968, 16: 682-687. 被引量:1
  • 4Ahmet B. Procedures for Providing Robust Gate Assignments for Arriving Aircrafts. European Journal of Operational Research, 2000,120(1 ): 63-80 被引量:1
  • 5Yan Shangyao, Huo Cheunming. Optimization of Multiple Objective Gate Assignments. Transportation Research Part A: Policy and Practice,2001, 35(5): 413-432 被引量:1
  • 6Dozier G, Bowen J, Homaifar A A .Solving Constraint Satisfaction Problems Using Hybrid Evolutionary Search. Evolutionary Computation, IEEE Transactions on Evolutionary Computation, 1998,2(1 ):23 被引量:1
  • 7Eiben A E, Raue P E, Ruttkay Z. Solving Constraint Satisfaction Problems Using Genetic Algorithms. Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, 1994,2:542 -547 被引量:1
  • 8Wang C J, Tsang E P K. Solving Constraint Satisfaction Problems Using Neural Networks. Artificial Neural Networks, Second International Conference, 1991:295 -299 被引量:1
  • 9Craenen B G W, Eiben A E, Marchiori E. Solving Constraint Satisfaction Problems with Heuristic-based Evolutionary Algorithms.Evolutionary Computation, Proceedings of the 2000 Congress, 2000,2:1571 -1577 被引量:1
  • 10张全寿.编组站站调决策支持系统的研究[J].北方交通大学学报,1989,13(4):64-72. 被引量:8

共引文献112

同被引文献46

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部