期刊文献+

微构件的力学性质分析与验证

Analysis and verification for mechanical properties of micro component
下载PDF
导出
摘要 分析了微悬臂梁的挠度与载荷、微悬臂梁的长度、宽度的力学关系.提出了一种改进的BP神经网络算法,并用该算法进行挠度与载荷在不同条件下关系的拟合实验,验证了力学分析的结论.理论和实验都表明:当其他参数固定时,挠度与悬臂梁的长度正相关,与悬臂梁的宽度负相关;挠度在较小的范围内与载荷呈线性关系,在形变位移到达最大值时接近于常量. According to the increasing demand for performance of Micro components for MEMS (Micro-Electro- Mechanical System), it is very important to research the mechanics properties of micro component. The relationship between the deflection and load of the microcantilever beam, the deflection and the length and the width of mieroeantilever beam are analyzed. The improved BP neural network algorithm is applied, the Data Fitting experiment is done to validate the relationship of Deflect and Load under different conditions and to validate the conclusion of mechanics analysis by using the BP neural network algorithm. Theory and experiment show that: when the other parameters fixed, deflection has a positive correlation with the length of cantilever, negative correlation with the beam Width; deflection in a smaller range has a linear relationship with the load, it is close to constant when deformation displacement come to the maximum.
出处 《湖南文理学院学报(自然科学版)》 CAS 2011年第2期37-39,54,共4页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 改进BP网络 微构件 力学性质 improvemed BP network micro component mechanics properties
  • 相关文献

参考文献9

二级参考文献49

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部