期刊文献+

基于混合遗传算法的车间生产计划调度 被引量:9

Job shop schedule scheme based on hybrid genetic algorithm
下载PDF
导出
摘要 针对车间环境的动态随机性、多工序问题,研究了调度问题和算法的特征,提出了一种基于混合遗传算法的车间调度方案。在传统遗传算法的基础上,采用交叉算子、变异算子与启发式算子结合,实现了混合遗传算法,避免了传统遗传算法解的不可行性。再把紧急工序作为一个时域段,结合可变时域滚动机制,实现了可插入紧急工序的调度算法,使一道工序不需重新调度也可排入作业计划,避免了不可插入性,节省了时间,提高了效率。结合实例进行仿真分析,结果表明了调度的可行性、正确性、满意度。 The job shop schedule scheme based on the hybrid genetic algorithm is developed for the random of work shop environment and problem of procedures by studying job shop schedule problem and algorithm character. First, the hybrid genetic algorithm is implemented using heuristic crossover and mutation operators based genetic algorithm, avoiding tradition genetic algorithm inaccuracy. Second, taking emergency procedures as a rolling window combined the rolling window being time-based, the schedule algorithm of inserted emergency procedures is implemented, in which emergency procedures may be arranged work shop plan while not be scheduled over again, reducing time and improving efficiency. It ensures the correctness of schedule and the degree of being pleased with schedule.
作者 崔雪丽
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2467-2471,2475,共6页 Computer Engineering and Design
关键词 可变滚动时域 混合遗传算法 启发式交叉算子 启发式变异算子 可插入紧急工序 rolling window being time-based hybrid genetic algorithm heuristic crossover operators heuristic mutation operators inserted emergency procedures
  • 相关文献

参考文献8

二级参考文献29

  • 1张超勇,饶运清,李培根,刘向军.求解作业车间调度问题的一种改进遗传算法[J].计算机集成制造系统,2004,10(8):966-970. 被引量:53
  • 2余建军,孙树栋,郝京辉.免疫算法求解多目标柔性作业车间调度研究[J].计算机集成制造系统,2006,12(10):1643-1650. 被引量:27
  • 3Gen M. Cheng R. Genetic algorithms and engineering optimization. Wiley Interscience, 2000. 183 - 184. 被引量:1
  • 4Mehrabad S, Mohammad, Fattahi, et al. Flexible Job Shop Scheduling with Tabu Search Algorithms. The International Journal of Advanced Manufacturing Technology (S0268-3768), 2007,32(5):563 - 570. 被引量:1
  • 5Xing YJ, Chen ZT, Sun J. An Improved Adaptive Genetic Algorithm for Job-Shop Scheduling Problem. IEEE Third International Conference on Natural Computation, 2007,23(6):1752- 1767. 被引量:1
  • 6玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396
  • 7Park B J,et al.A hybrid genetic algorithm for the Job-shop scheduling problems[J].Computers & Industrial Engineering,2003,45:597 ~ 613 被引量:1
  • 8Cheng R,Gen M,Tsujimura Y.A tutorial survey of Job-shop scheduling problems using genetic algorithms,part Ⅱ:hybrid genetic search strategies[J].Computers and Industrial Engineering,1999,(36):343 ~ 364 被引量:1
  • 9Bierwirth C.A generalized permutation approach to Job-shopscheduling with genetic algorithms[J].OR Spektrum,1995,17:87~92 被引量:1
  • 10Gen M,et al.Solving Job-shop scheduling problems by genetic algorithm[A].In:Proc.of the 16th Int.Conf.on Computer and Industrial Engineering[C],Japan,1994:576 ~ 579 被引量:1

共引文献42

同被引文献51

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部