期刊文献+

氧乐果合成过程的PSO-回归BP网络建模方法 被引量:3

Modeling Method of PSO-recurrent BP Network for Omethoate Synthesis Process
下载PDF
导出
摘要 为了提高模型效率,更好地反映实际系统的动态特性,根据氧乐果合成过程特点确定了PSO-回归BP网络结构.采用惯性权重动态调整的粒子群算法进行初始寻优,并基于改进的BP算法对优化的网络权阈值进一步精确优化,建立了氧乐果合成过程的PSO-回归BP网络模型.仿真结果表明,所建模型误差小、收敛速度快、网络泛化能力强,能更好地反映实际对象特点. In order to improve the model efficiency and show dynamic characteristic of the system, the modeling method of PSO-recurrent BP network for omethoate synthesis process was studied. Firstly, the structure of PSO-recurrent BP network was determined according to the features of the object. Secondly, PSO algorithm was used to optimize the weight and threshold of BP neural network. Finally, the improved BP algorithm was used to train the pre-optimized weight and threshold for getting further accurate parameters of the model. The simulation results showed that this model not only had small error, fast convergence speed and strong ability of network generalization, but also show characteristics of the actual object well.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第3期113-117,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号60774059
关键词 粒子群算法 回归BP网络 氧乐果合成 温度对象 PSO algorithm recurrent BP neural network omethoate synthesis temperature object
  • 相关文献

参考文献12

二级参考文献48

共引文献49

同被引文献22

  • 1Huang Guangbin, Zhu Qinyu, Siew Cheekheong. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006,70( 1/2/3 ) :489 - 501. 被引量:1
  • 2Deng W, Chen L. Color imagewatermarking using regularized extreme learning machine [ J ]. Neural Network World, 2010,20 (3) :317 -330. 被引量:1
  • 3Zong Weiwei, Huang Guangbin. Face recognition based on extreme learning machine [ J ]. Neurocomputing,2011,74 (16) :2541 - 2551. 被引量:1
  • 4Kennedy J, Eberhart R. Particle swarm optimization [ C ]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, 1995 : 1942 - 1948. 被引量:1
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]//Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995:39 -43. 被引量:1
  • 6Chih Chung Chang, Chih Jen Lin. LIBSVM : a library for support vector machines [ EB/OL ]. [ 2012 - 11 - 16 ] http ://www. csie. ntu. edu. tw/ - cjlin/libsvm,. 被引量:1
  • 7Pham D T, et al. Dynamic system identification using Elman and Jordan Networks [A]. Neural Networks for Chemical Engineers[C]. Elsevier Seiense Publishers, 1995:573-592. 被引量:1
  • 8Qi Hongji, Liu Mandan, Wang Honggang. Proeeess modeling method based on an improved Elman neural netwrk//Proceedings of the 7th World Congress on Intelligent Control and Automation[C].2008, 26(7): 8188-8192. 被引量:1
  • 9Rumelhart D, Williams R. Learning representations by back propagating errors[J]. Nature, 1986, 323(9): 533-536. 被引量:1
  • 10B.Scholkopf, A. Smola, K-P Muller. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(6): 1299-1319. 被引量:1

引证文献3

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部