期刊文献+

极限学习机多目标模型选择研究 被引量:5

Multi-objective Model Selection for Extreme Learning Machine
下载PDF
导出
摘要 为了克服极限学习机输入权重与偏置的随机性对模型泛化能力的负面影响,提出一种基于多目标优化的极限学习机模型选择方法将极限学习机模型选择视为一个多目标全局优化问题,可将泛化误差和输出权重的模作为优化目标;为加快优化速度,引入极限学习机的快速留一法误差估计指代泛化误差,并考虑到优化目标间的互斥性,最终采用多目标综合学习粒子群算法寻找非支配解。通过5个UCI回归数据集上的仿真结果表明,与常用极限学习机模型选择方法相比,改进方法均取得更低的预测误差,同时网络结构更加紧凑。 This paper introduces a new model selection method of ELM based on multi - objective optimization. This method takes ELM model selection as a multi -objective global optimization problem, in which the generaliza- tion error and output weights are as optimization objectives. To accelerate the optimization speed, a fast Leave - one - out (LOO) error estimate of ELM is introduced to refer to the generalization error. Taking into account the contradiction between these two objectives, multi -objective comprehensive learning particle swarm optimization algorithm is utilized to find non - dominated solutions. Experiments for five UCI regression data sets are conducted, the results demonstrate that the proposed algorithm can achieve a lower prediction error with more compact network than the conventional ELM model selection method.
出处 《计算机仿真》 CSCD 北大核心 2014年第8期387-391,共5页 Computer Simulation
基金 国家自然科学基金(U1204609) 河南省基础与前沿技术研究计划项目(132300410430)
关键词 极限学习机 多目标优化 模型选择 Extreme learning machine Multi - objective optimization Model selection
  • 相关文献

参考文献3

二级参考文献24

  • 1Huang Guangbin, Zhu Qinyu, Siew Cheekheong. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006,70( 1/2/3 ) :489 - 501. 被引量:1
  • 2Deng W, Chen L. Color imagewatermarking using regularized extreme learning machine [ J ]. Neural Network World, 2010,20 (3) :317 -330. 被引量:1
  • 3Zong Weiwei, Huang Guangbin. Face recognition based on extreme learning machine [ J ]. Neurocomputing,2011,74 (16) :2541 - 2551. 被引量:1
  • 4Kennedy J, Eberhart R. Particle swarm optimization [ C ]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, 1995 : 1942 - 1948. 被引量:1
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]//Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995:39 -43. 被引量:1
  • 6Chih Chung Chang, Chih Jen Lin. LIBSVM : a library for support vector machines [ EB/OL ]. [ 2012 - 11 - 16 ] http ://www. csie. ntu. edu. tw/ - cjlin/libsvm,. 被引量:1
  • 7毛文涛.支持向量回归机模型选择研究及在综合力学环境预示中的应用[D].西安:西安交通大学,2011. 被引量:4
  • 8HUANG G B, ZHU X, SIEW C. Extreme learning machine: theory and applications[J]. Neuroeomputing, 2006, 70(1/2/3): 489- 501. 被引量:1
  • 9HUANG G B, DING X J, ZHOU H. Optimization method based ex- treme learning machine for classification [ J]. Neurocomputing, 2010, 74(1/2/3) : 155 - 163. 被引量:1
  • 10HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[ J]. International Journal of Machine Learning and Cybernet- ics, 2011, 2(2): 107-122. 被引量:1

共引文献145

同被引文献22

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部