摘要
在通过广播星历求解卫星坐标时,利用切比雪夫多项式拟合卫星位置提高计算的效率。介绍切比雪夫多项式拟合的原理,通过算例分析用切比雪夫多项式拟合卫星位置的精度,并研究多项式阶数以及拟合点时间间隔对拟合精度的影响。结果表明,在一定范围内,多项式的阶数越高,拟合精度越高,拟合点时间间隔越短,拟合精度越高。
In the process of solving the satellite position with broadcast ephemeris,Chebyshev polynomial fitting can improve the computing efficiency.The paper introduced the theory of the Chebyshev polynomial fitting,then analysed the fitting accuracy of Chebyshev polynomial by examples,and did research on the influences of polynomial ranks and time intervals on the fitting accuracy.The results showed that with a certain range,the higher the polynomial ranks,the more accurate the fitting;the shorter the time intervals,the more accurate the fitting.
出处
《测绘工程》
CSCD
2011年第3期38-40,共3页
Engineering of Surveying and Mapping
关键词
广播星历
切比雪夫多项式
卫星位置
拟合精度
broadcast ephemeris
Chebyshev polynomial
satellite position
fitting accuracy