摘要
给出了五次样条函数M,T关系式的构造过程,分类补充4个边界条件,得到关于变元Mi,Ti的对称五对角线性方程组,解之仅需约20 n个运算量,从而能方便快捷地求出五次样条函数的分段表达式.数值结果显示其具有较高的逼近精度及良好的整体光滑性.
The M,T relation formulas of quintic interpolating splines are deduced. After complementing four boundary conditions,a linear system with quinque-diagonal coefficient matrix is obtained,and it can be solved in about 20n operations. And then the subsection analytic formulas of quintic interpolating splines are derived. Numerical results show that it has high accuracy of approximation and whole smoothness compared with other interpolation functions.
出处
《郑州大学学报(理学版)》
CAS
2005年第3期15-18,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
湖南省自然科学基金资助项目
编号03JJY3014
关键词
五次样条函数
M
T关系式
边界条件
五对角线性方程组
误差
quintic interpolating splines
M,T relation formulas
boundary conditions
quinquediagonal linear systems
errors