摘要
应用奇异交叉谱(SCSA)分析方法,提取Nino 海区各区的平均海温(SST)和南方涛动指数(SOI)之间的耦合振荡信号,由此描述其年际和年代际的时变特征。基于SCSA,重建耦合振荡分量序列(RCCS),并与回归分析相结合,对Nino 各海区平均的SST月际序列作短期气候预测试验。结果表明,各海区SST与SOI的显著耦合振荡周期各有特色,其年际或10 年际变化不尽相同,从而构成了ENSO信号在时空演变型态上的复杂性。SCSA基础上的回归预报模型的预报技巧绝大部分优于SSA-AR预报模型。
The singular cross spectrum analysis(SCSA) is used to extract the coupled oscillation signals between SST over Nino oceanic regions and SOI,therefrom describing their interannual and decadal variation features.The short term climatic prediction experiment is made for SST over Nino oceanic regions based on reconstructed coupled oscillation components series(RCCS) together with regression model. Results show that there is different coupled oscillation periods between SST over different Nino oceanic regions and SOI,as well as different interannual and decadal variation features,thereby forming ENSO's complexity in its space/time evolution. The forecast skill of SCSA combing regression model is mostly superior to the SSA AR prediction model,demonstrating its advantages in actual prediction experiment.
出处
《南京气象学院学报》
CSCD
1999年第4期637-644,共8页
Journal of Nanjing Institute of Meteorology
基金
国家"九五"攻关项目!96-908-04-02 专题
关键词
奇异交叉谱
耦合振荡信号
气候诊断
NINO
SOI
singular cross spectrum analysis
coupled oscillation signals
climatic diagnosis and prediction