期刊文献+

基于RKPM梁固有频率及薄板柔度的拓扑优化 被引量:3

RKPM-based topology optimization for natural frequency of beam and compliance of thin plate
原文传递
导出
摘要 以节点相对密度为设计变量,以固有频率最大为目标函数,通过修正低密度区质量矩阵建立了基于重构核粒子法(RKPM)的结构动力拓扑优化数学模型.采用罚函数法施加本质边界条件,利用直接微分法推导了结构固有频率灵敏度方程,同时研究了受横向载荷弯曲的基尔霍夫薄板柔度最小的拓扑优化问题.最后对比分析了节点依赖性以及设计变量对最优拓扑结构的影响,并结合以上算法和优化准则法编写程序完成了2个拓扑优化算例.优化结果表明:所建立的模型不仅能有效抑制局部模态和重特征频率的出现,而且因通过重构核近似提高了计算点密度场的连续性,棋盘格现象得以消除,可以得到清晰光滑的拓扑边界. Relative density of node was chosen as design variable, and maximizing the natural frequency was the objective function, and then a numerical model of structural dynamic topology optimization based on reproducing kernel particle method (RKPM) was established through modifying the mass matrix in low density domain. The penalty method was employed into imposing the essential boundary conditions, and the sensitivity equation of structural natural frequency was deduced by using direct differentiation method. Meanwhile, the topology optimization problem for the minimum compliance of Kirchhoff pla(e under a transverse load was studied. Finally, the node dependency and the effec( of design variables on optimal topology were analyzed, and two numerical examples of topology optimiza- tion were performed by programming and integrating the above algorithms with optimality criteria method. The results show that the proposed model can not only suppress the appearance of localized eigenmodes and multiple eigenfrequencies effectively, but also the checkboards phenomenon is elimi- nated and a clear and smooth topological boundary can be obtained because the continuity of Gauss point's density field is improved through reproducing kernel approximation.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期101-105,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50875223)
关键词 动力拓扑优化 无网格法 重构核粒子法 基尔霍夫薄板 灵敏度分析 dynamic topology optimization meshless method reproducing kernel particle method Kirchhoff thin plate sensitivity analysis
  • 相关文献

参考文献15

  • 1叶红玲..连续体结构静力拓扑优化方法与软件开发[D].北京工业大学,2005:
  • 2Maekerle J. Topology and shape optimization of structures using FEM and BEM-a bibliography (1999-2001)[J]. Finite Elements in Analysis and De sign, 2003, 39: 243-253. 被引量:1
  • 3Yoon G H. Maximizing the fundamental eigenfre- quency of geometrically nonlinear structures by topol ogy optimization based on element connectivity pa- rameterization[J]. Computers and Structures, 2010, 88: 120-133. 被引量:1
  • 4龙凯,左正兴.基于节点独立变量的连续体结构动态拓扑优化[J].固体力学学报,2008,29(1):91-97. 被引量:5
  • 5李志鑫,李小清,陈学东,陈鹿民.基于频率约束的连续体拓扑优化方法的研究[J].华中科技大学学报(自然科学版),2008,36(2):5-8. 被引量:4
  • 6Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16: 68-75. 被引量:1
  • 7Sigmund O. A 99 line topology optimization code written in Matlab[J]. Structural and Muhidiscipli- nary Optimization, 2001, 21(2) : 120-127. 被引量:1
  • 8Seyranian A P, Lund E, Olhoff N. Multiple eigenval ues in structural optimization problems[J]. Structural Optimization, 1994, 8(4): 207-227. 被引量:1
  • 9朱继宏,张卫红,邱克鹏.结构动力学拓扑优化局部模态现象分析[J].航空学报,2006,27(4):619-623. 被引量:25
  • 10Liu W K, Jun S, Zhang Y F. Reproducing kernel particle rnethods[J]. International Journal for Nu- merical Method in Fluids, 1995, 20: 1081-1106. 被引量:1

二级参考文献58

共引文献58

同被引文献22

  • 1刘大全,肖忠会,张文,郑铁生.滑动轴承非线性油膜力的一维直接解法[J].机械工程学报,2005,41(2):51-56. 被引量:11
  • 2杨建刚,郭瑞,高亹.基于径向基函数的滑动轴承压力分布求解模型[J].中国电机工程学报,2005,25(6):157-160. 被引量:11
  • 3郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J].机械设计,2007,24(8):1-6. 被引量:143
  • 4Nguyen V P,Rabczuk T,Bordas S,et al.Meshless methods:a review and computer implementation aspects[J].Mathematics and Computers in Simulation,2008,79(3):763-813. 被引量:1
  • 5Liu W K,Jun S,Zhang Y F.Reproducing kernel particle methods[J].International Journal for Numerical Method in Fluids,1995,(20):1081-1106. 被引量:1
  • 6Wagner G J,Liu WK.Turbulence simulation and multiple scale subgrid models[J].Computational Mechanics,2000,(25):117-136. 被引量:1
  • 7Xiong S W,Li C S,Rodrigues J M C,et al.Steady and non-steady state analysis of bulk forming processes by the reproducing kernel particle method[J].Finite Elements in Analysis and Design,2005,(41):599-614. 被引量:1
  • 8Zhang J P,Gong S G,Huang Y Q,et al.Structural dynamic shape optimization and sensitivity analysis based on RKPM[J].Structural and Multidisciplinary Optimization,2008,36(3):307-317. 被引量:1
  • 9Yang J G,Guo R,Tian Y W.Hybrid radial basis function/finite element modelling of journal bearing[J].Tribology International,2008,(41):1169-1175. 被引量:1
  • 10Li X H,Du H J,Liu B,et al.Numerical simulation of slider air bearings based on a mesh-free method for HDD applications[J].Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,2005,11(8/10):797-804. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部