摘要
针对多工况载荷条件下连续体结构拓扑优化设计的研究现状 ,以各载荷下对应结构的最小柔度作为目标函数 ,基于带权重的折衷规划法和SIMP密度函数插值模型 ,提出并建立了多载荷条件下线弹性连续体结构拓扑优化设计的数学模型 .对优化过程中出现的棋盘格式和网格依赖性等数值计算问题进行了研究 ,在此基础上提出一种二重敏度过滤技术 ,该方法能有效消除优化结构中的棋盘格式 ,并使优化结构体现出较好的网格无关性 .通过几个典型的算例证明了该文方法的有效性 .
Topological optimization of continuum type is discussed. The minimum compliances corresponding to different loading cases are taken as the single objectives. The mathematical model of topology optimization for Continuum Structures has been worked out based on SIMP interpolation scheme and the comprise programming method. Problems of numerical instabilities, such as checkerboards and mesh dependencies,are also discussed. A duplicate filtering approach as well as its modified form are proposed to eliminate checkerboards and improve mesh dependencies.Several numerical applications are used to prove the validity of the methods adopted in this paper.
出处
《固体力学学报》
CAS
CSCD
北大核心
2005年第1期29-36,共8页
Chinese Journal of Solid Mechanics
基金
国家"8 63"高技术研究发展计划 (2 0 0 3AA0 0 10 3 1)
国家"973"重点基础研究发展计划 (2 0 0 3CB7162 0 7)资助 .
关键词
连续体结构
敏度
多工况
载荷
刚度
柔度
基础
密度函数
证明
算例
multiobjective topology optimization, SIMP interpolation scheme, optimality criteria method, filtering method