期刊文献+

改进PSO权值算法在流水生产调度中的应用 被引量:8

Application of improved PSO weighting in production line scheduling
下载PDF
导出
摘要 为了在生产中快速有效且合理地安排生产流程,达到生产最优化,采用改进粒子群权值算法(DPSO)。研究了DPSO算法地参数设置问题,在传统PSO算法基础上加入具有动态自适应调整功能的权重因子,使算法更快地达到全局最优化,迭代次数也大大缩短,将DPSO算法用于流程工业的flow-shop调度中,大大提高了生产效率,仿真实验表明该算法具有良好的全局优化性能。该成果对生产调度具有一定的参考价值和指导意义。 In order to generate a fast,efficient and rational schedule for a production process to achieve an optimal production,a modified Particle Swarm Algorithm,the weights of Particle Swarm Optimization Algorithm(DPSO),were investigated.The study concentrated on the parameter settings for DPSO algorithm.Based on the traditional PSO algorithm,the weighting factors with dynamic and adaptive adjustment capabilities were introduced,which make the algorithm achieving global optimization faster,and also greatly reducing the number of iterations.The DPSO algorithm was used for flow-shop scheduling in process industries to greatly improve the efficiency of production.The simulation indicates that the algorithm has very good performance on global optimization.The results have a reference value to production scheduling.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2011年第2期308-311,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(60974071) 辽宁省教育厅重点实验室基金资助项目(2009S002)
关键词 流水车间调度 粒子群优化 惯性权重 全局优化 生产调度 flow shop scheduling particle swarm optimization inertia weight global optimization production scheduling
  • 相关文献

参考文献10

  • 1Pinedo M.Scheduling:theory,algorithms and systems,2nd ed[M].Englewood Cliffs,NJ:Prentice-Hall,2002. 被引量:1
  • 2Johnson S M.Optimal two-and three-stage production schedules with setup tunes included[J].Naval Research Logistics Quarterly,1954,(1):61-68. 被引量:1
  • 3Dudek R A,Panwalkar S S,Smith M L.The lessons of flowshop scheduling research[J].Oper Res.,1992,(40):7-13. 被引量:1
  • 4Garey M,Johnson D.Sethi R.The complexity of flow shop and job shop scheding[J].Mathematics of Operations Research,1976,24(1):117-129. 被引量:1
  • 5王凌,刘波编著..微粒群优化与调度算法[M].北京:清华大学出版社,2008:219.
  • 6Shi Y.Eberhart R,C.Parameter selection in partice swarm optimization[J].Evolutionary Programming VII,Lecture Notes in computer Science,Springer,1998:1 447-1 471. 被引量:1
  • 7Shi Y,Eberhart R C.A modified partice swarm optimizer[R].IEEE International Conferenceof Evolutionary computation,Anchorage,Alaska,1998. 被引量:1
  • 8段晓东,王存睿,刘向东编著..粒子群算法及其应用[M].沈阳:辽宁大学出版社,2007:261.
  • 9李丙春.粒子群优化算法及其应用[J].喀什师范学院学报,2006,27(3):66-68. 被引量:2
  • 10邹毅,朱晓萍,霍龙,赵连学.一种改进的粒子群优化算法及其应用[J].沈阳工程学院学报(自然科学版),2006,2(3):283-286. 被引量:5

二级参考文献11

  • 1张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 2[1]Kenedy J,Eberhart R C.Particle Swarm Optimization[ A].International Conference on Neural Networks[ C ].Piscataway:IEEE Press,1995:1942-1948. 被引量:1
  • 3[2]Eberhart R C,Kenedy J.A New Optimizer Using Particle Swarm Theory[A].The Sixth International Symposium on Micro Machine and Human Science[C].Nagoya:IEEE Press,1995:39-43. 被引量:1
  • 4[3]Eberhart R C,Simpson P K,Dobbins R W.Computational Intelligence PC tools[M].Boston:Academic Press Profestional,1996. 被引量:1
  • 5[4]Vanden Bergh.An Analysis of Particle Swarm Optimizers[D].South Africa:Department of Computer Science,University of Pretoria,2002. 被引量:1
  • 6[5]Ye Luqing,Wang Shengtie.Control Maintenance Strategy for Fault Tolerant Mode and Reliability Analysis of Hydro Power Stations[ J].Transactions on Power Engineering,2001. 被引量:1
  • 7[6]Wang Shengtie.Intelligent Networked (N + M) Fault Tolerant System s for Hydro Power Stations[J].International Journal Hydro-electric Energy,1999,17(1). 被引量:1
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]∥ Proc IEEE Int 'l Conf on Neural Net works.Perth 1995:1942-1948. 被引量:1
  • 9Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[C]∥ Proc.IEEE Int 'l Conf.on Evolutionary Computation,NJ,1998:69-73. 被引量:1
  • 10Eberhart R C,Shi Y.Particle swarm optimization:Deve lopments,Applications and Resources[C]∥ Proc IEEE Int 'l Conf on Evolu tionary Computation,Seoul,Korea.,2001:81-86. 被引量:1

共引文献5

同被引文献83

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部