期刊文献+

Banach空间中实函数芽的K-bi-Lipschitz等价的判定

The criterion of K-bi-Lipschitz equivalence of real function germs in Banach spaces
下载PDF
导出
摘要 推广了欧氏空间中的相应概念,给出了Banach空间中实函数芽的K-bi-Lipschitz等价,K-M-bi-Lipschitz等价与相同的切触概念,得到了判别可分的Banach空间上的两个实函数芽为C-bi-Lipschitz等价的一种行之有效的方法.同时指出K-bi-Lipschitz等价与K-M-bi-Lipschitz等价之间的关系.并给出Banach空间上的多项式函数芽在K-bi-Lipschitz等价关系下进行分类的基础. The notions of K-bi-Lipschitz equivalence,the same contact and K-M-bi-Lipschitz equivalence between real function germs in Euclidean spaces are generalized to Banach spaces.The criterion method of C-bi-Lipschitz equivalence between real function germs in separable Banach spaces is given.The relationship of K-bi-Lipschitz equivalence and K-M-bi-Lipschitz equivalence is investigated.The main results provide the basis of the classification of polynomial function germs on Banach space under K-bi-Lipschitz equivalence relation.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期28-32,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10271023) 吉林省教育厅"十一五"科学技术研究基金资助项目(2009199)
关键词 BANACH空间 K-bi-Lipschitz等价 K-M-bi-Lipschitz等价 相同的切触 GATEAUX可微 GAUSS测度 Banach space; K-bi-Lipschitz equivalence; K-M-bi-Lipschitz equivalence; same contact; Gateaux derivative; Gaussian measure
  • 相关文献

参考文献7

  • 1BIRBRAIR L,COSTA J C F,FERNANDES A, et al. *-bi-Lipschitz equivalence of real function germs[J].Proc Am Math Soc, 2007,135 (4) : 1089-1095. 被引量:1
  • 2PARUSINSKI A. Lipschitz properties of semi-analytic sets[J]. Am Inst Fourier(Grenoble), 1998,38(4) : 189 213. 被引量:1
  • 3LINDENSTRAUSS J. The differentiability of Lipsehitz maps between Banach spaces and porous sets[J]. Comment Math Univ Carolinae, 1998,39 (2) :323-335. 被引量:1
  • 4BELITSKII G R. Sternberg's theorem for Banach spaces[J].Functional Analysis and Its Applications, 1984,18(3) :238-239. 被引量:1
  • 5MAT HER J. Stability of C∞ mapping, Ⅲ: finitely determined map germs[J]. Publ Math I H E S, 1969,35:127-156. 被引量:1
  • 6GIBSON C G. Singular points of smooth mappings[M]. London:Pitman, 1979:94-138. 被引量:1
  • 7BONGIORNO D. Stepanoffs theorem in separable Banach spaces[J]. Comment Math Univ Carolinae, 1998,39(2) :323-335. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部