期刊文献+

InequalityProve及一个公开问题的求解 被引量:1

InequalityProve and the Solution to an Open Problem
下载PDF
导出
摘要 传统的不等式自动证明方法主要依赖于符号计算,一般只能处理代数类型,或可最终转化为代数类型的不等式,而且效率会随着问题中变量个数的增加迅速降低。为克服这些局限性以满足众多实际问题的需要,并充分挖掘计算机在数值计算方面的能力,我们提出以区间分析为工具进行不等式的自动证明。该方法可以处理类型更为一般的不等式,只需对应的函数具有所需的高阶连续可微性质,并且该方法易于实现并行化。本文主要介绍这一方法在Maple系统上的实现,即InequalityProve,并以一个公开问题为例详细说明运用InequalityProve进行不等式证明的一般过程。 Traditional methods of automatic inequality proving mainly make use of symbolic computation,and generally deal with algebraic inequalities or inequalities that can be ultimately converted to algebraic types.The efficiencies of these methods decrease rapidly as variable numbers grow.In order to meet the needs in practice,and make full use of the numerical computation power of computers,we propose a method of proving inequalities automatically based on interval analysis.This method can be applied to more general types of inequalities,which only need to be continuously differentiable to the required orders,moreover,it can be easily parallelized.InequalityProve is the implementation of the automatic inequality proving method based on interval analysis on the Maple system.The general steps of automatically proving inequalities using InequalityProve are introduced,and detailed procedures are illustrated through solving an open problem.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第6期114-117,共4页 Computer Engineering & Science
基金 国家973计划资助项目(2004CB318000) 国家自然科学基金资助项目(10571095)
关键词 区间分析 不等式 自动证明 interval analysis inequality automatic proving
  • 相关文献

参考文献6

二级参考文献6

共引文献82

同被引文献31

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部