期刊文献+

几种微分方程李对称决定组生成软件包的比较研究

Study of Some Packages for Generating Determining System of Lie Symmetry for Differential Equation
原文传递
导出
摘要 根据微分方程李对称决定方程组生成算法,在计算机代数系统Maple上给出了具体实现GDS,并指出了现行Maple系统上关于李对称计算的软件包liesymm的缺陷,最后通过一些计算实例对三个Maple系统下的软件包GDS,liesymm以及Desolv进行了比较研究. Based on the algorithm of Lie symmetry for differential equation(s), a package GDS has been designed on Maple. The bugs of the liesymm for Lie Symmetry computation on Maple has been found firstly, some differential equation(s) are tested for the three packages liesymrn, GDS and Desolv, and some experimental results are obtained which may show a hint for computing Lie Symmetry of differential equation(s) thereafter.
作者 张善卿
出处 《应用数学学报》 CSCD 北大核心 2007年第6期1004-1010,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(60773119)资助项目.
关键词 李对称 微分方程 计算机代数系统 符号计算 lie symmetry differential equations computer algebra system symbolic computation
  • 相关文献

参考文献14

  • 1Carminati J, Devitt J S, Fee G J. Isogroups Of Differential Equations Using Algebraic Computing. J.Symb.Comp., 1992, 14(1): 103-120. 被引量:1
  • 2Zhang S Q, Li Z B, Jiao Y S. Automatic Generation for the Determining Equations of Classical Lie Symmetry Of Differential Equation. Journal of Qingdao University (Natural Science Edition), 2003,16(Suppl): 1-5. 被引量:1
  • 3Carminati J, Knai V. Symbolic Computation and Differential Equations: Lie Symmetries. J. Symb.Comp., 2000,29:95-116. 被引量:1
  • 4Bluman G W, Kumei S. Symmetries and Differential Equations. New York: Springer-Verlag, 1989. 被引量:1
  • 5Olver P J. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1993. 被引量:1
  • 6Hereman W. Symbolic Software for Lie Symmetry Analysis. In: Ibragimov, N H ed., CRC Handbook of Lie group Analysis of Differential Equations Volume 3: New Trends in Theoretical Developments and Computational Methods. Florida, Boca Raton: CRC press, 1995. 被引量:1
  • 7Clarkson P.A, Winternitz P. Symmetry Reduction and Exact Solutions of Nolinear Partial Differential Equations. In: Conte R. ed., The Painleve property. New York: Springer-Verlag, 1999. 被引量:1
  • 8Liu S S, Liu S D. Nonlinear Equations In Physics. Beijing : Peking University Press, 2000. 被引量:1
  • 9Reid G J. Algorithms For Reducing a System of Pdes to Standard Form, Determining the Dimension of Its Solution Space and Calculating Its Taylor Sires Solution. Euro. J. Appl. Math., 1991, 2: 293-318. 被引量:1
  • 10Wu Wentsfin. On the Foundation of Algebraic Differential Geometry. Mathematics Mechanization Research Prcprints, 1989, 3: 1-29. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部