期刊文献+

面向制造任务动态分配的改进合同网机制 被引量:7

Improved contract net protocol for manufacturing tasks dynamic assignment
下载PDF
导出
摘要 为了强化合同网机制对于分布式调度的学习能力,提出了一种将基本合同网与Q-学习集成的适应性协商机制。运用统一建模语言序列图描述了该机制,并详细阐述了其策略决策过程和学习过程。通过设计嵌入的Q-学习算法的关键要素实现合同网学习机制。通过柔性制造车间内作业在可选单元上动态分配的仿真计算实例表明,相比基本合同网机制,所提机制在平均延误和可选单元间负载平衡这两项系统评价指标上都具有优势。 To intensify the learning ability of Contract Net Protocol(CNP),an adaptive coordination mechanism named CNP-QL which integrated Q-learning with the basic CNP was presented.The CNP-QL was expressed in Unified Modeling Language(UML) sequence diagram and its decision process as well as learning process were illustrated in detail.Key elements in the embedded Q-learning algorithm were designed to realize the CNP-QL.Computational experiments on tasks dynamic assignment among alternative cells in flexible manufacturing workshop were conducted.Simulation results showed that CNP-QL outperformed the basic CNP in terms of mean tardiness and workload balance among cells.
作者 王世进
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第6期1257-1263,共7页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70901058 70832005) 同济大学校基金资助项目(1200219146)~~
关键词 Q-学习 合同网机制 基于Agent的制造调度 柔性制造系统 柔性作业车间调度问题 Q-learning contract net protocol Agent-based manufacturing scheduling flexible manufacturing systems flexible Job Shop scheduling problem
  • 相关文献

参考文献17

  • 1SHEN W M, HAO Q, YOON H, et al. Applications of Agenl- based systems in intelligent manufacturing: an updated review[J]. Advanced Engineering Informatics,2006,20(4) :415- 431. 被引量:1
  • 2张洁等著..多Agent技术在先进制造中的应用[M].北京:科学出版社,2004:352.
  • 3GAO Qinglu, LUO Xin, YANG Shuzi. Stigmergic cooperation mechanism for shop floor control system[J]. International Journal of Advanced Manufacturing Technology, 2004,25 (7/8) : 743 -753. 被引量:1
  • 4HADELI, VALCKENAERS P, KOLLINGBAUM M, et al. Multi- agent coordination and control using stigmergy [J]. Computers in Industry,2004,53(1) :75-96. 被引量:1
  • 5SMITH R G. The contract net protocol:high -level communi- cation and control in a distributed problem solver[J]. IEEE Transactions on Computers,1980,29(12):1104 -1113. 被引量:1
  • 6SIWAMOGSATHAM T, SAYGIN C. Auction based distrib- uted scheduling and control scheme for flexible manufacturing systems[J]. International Journal of Production Research, 2004,42(3) :547 -572. 被引量:1
  • 7CARIDI M, CAVALIERI S. Multi-agent systems in produc- tion planning and control: an overvew[J]. Production Plan- ning& Control,2004,15(2):106 -118. 被引量:1
  • 8SHEN Weiming, WANG Lihui, HAO Qi. Agent- based dis- tributed manufacturing process planning and scheduling: a stale-of -the- art survey[J].IEEE Transactions on Systems, Man and Cybernetics Part C:Applications and Reviews, 2006, 36(4):563- 577. 被引量:1
  • 9DESHPANDE U, GUPTA A, BASU A. Performance enhance- ment of a contract net protocol based system through instance- based learning[J]. IEEE Transactions on System, Man, and Cy- bernetics Part B:Cybernetics,2005,35(2) :345- 358. 被引量:1
  • 10CSAJI B C, MONOSTORI L, KADAR B. Reinforcement learn- ing in a distributed market based production control system[J]. Advanced Engineering Informatics, 2006,20(3) : 279 -288. 被引量:1

二级参考文献10

  • 1魏英姿,赵明扬.资源受限单机动态调度的并行GA算法研究[J].系统仿真学报,2005,17(4):827-830. 被引量:2
  • 2范波,潘泉,张洪才.一种基于分布式强化学习的多智能体协调方法[J].计算机仿真,2005,22(6):115-117. 被引量:5
  • 3李冬梅,陈卫东,席裕庚.基于强化学习的多机器人合作行为获取[J].上海交通大学学报,2005,39(8):1331-1335. 被引量:4
  • 4Crites R H,Barto A G.Improving elevator performance using reinforcement learning[C]// Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1996:1017-1023. 被引量:1
  • 5Aydin M E,Oztemel E.Dynamic job-shop scheduling using reinforcement learning agents[J].Robotics and Autonomous Systems,2000,33:169-178. 被引量:1
  • 6Wang Y C,Usher J M.Application of reinforcement learning for agent-based production scheduling[J].Engineering Applications of Artificial Intelligence,2005,18:73-82. 被引量:1
  • 7Watkin C,Dayan P.Q-Learning[J].Machine Learning,1992,8:279-292. 被引量:1
  • 8Kaelbling L P,Littman M L,Moore A W.Reinforcement learning:A survey[J].Journal of Artificial Intelligence Research,1996,4:237-285. 被引量:1
  • 9Shen W M,Wang L H,Hao Q.Agent-based distributed manufacturing process planning and scheduling:A state-of-the-art survey[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2006,36(4):563-577. 被引量:1
  • 10Liu J M.Autonomous agents and multi-agent systems:Explorations in learning,self-organization and adaptive computation[M].Singapore:World Scientific,2001. 被引量:1

共引文献10

同被引文献58

  • 1张海俊,史忠植.动态合同网协议[J].计算机工程,2004,30(21):44-46. 被引量:36
  • 2霍霄华,陈岩,朱华勇,沈林成.多UCAV协同控制中的任务分配模型及算法[J].国防科技大学学报,2006,28(3):83-88. 被引量:47
  • 3张国海,江平宇,周光辉.多设计任务调度的非合作博弈研究[J].西安交通大学学报,2007,41(3):303-306. 被引量:6
  • 4CHEN G, CURZ J B, JR C. Genetic algorithm for task alloca- tion in UAV cooperative control [C]//Proeeedings of AIAA Guidanc, Navigation, and Control Conference and Exhibit. Re- ston, Va. ,USA:AIAA,2003. 被引量:1
  • 5MACKENZIE D C. Collaborative tasking of tightly constrain- ed multi-robot missions[C]//Proceedings of the 2nd Interna- tional Workshop on Multi-Robot Systems. Norwell, Mass. , USA: Kluwer Academic Publishers, 2003.. 39-50. 被引量:1
  • 6CURZ J B, JR C, CHEN G. Particle swarm optimization for resource allocation in UAV eooperative control[C]//Proeeed- ings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston,Va. ,USA:AIAA, 2004. 被引量:1
  • 7I~)RIC~ M, STUTZLE T. Ant colony optimization[M]. Cambridge, Mass. , USA: MIT Press, 2004. 被引量:1
  • 8BLUM G. Ant colony optimization: introduction and recent trends[J]. Physics of Life Reviews, 2005, 2(4): 353-373. 被引量:1
  • 9XING Lining, CHEN Yingwu, YANG Kewei. Double layer ACO algorithm for the multi-objective FJSS[J].New Gen- eration Computing, 2008, 26(4): 313-327. 被引量:1
  • 10XING Lntng, ROHLFSHAGEN P, CHEN Yingwu, et ak A hybrid ant colony optimization to extended capacitated arc routing problems[J].IEEE Transactions on Systems, Man, and Cybernetics, 2011,41(4) : 1110-1123. 被引量:1

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部