期刊文献+

基于R学习的合同网实时调度模型 被引量:1

Real-time contract-net-protocol scheduling model based on R-learning
下载PDF
导出
摘要 提出一种融入合同网运行机制的R学习方法,以此方法为核心构造Agent形成具有学习能力的实时调度模型。模型以最小化作业累计平均流动比为主要目标,同时借助对强化学习报酬的设计减小机器负载的不均衡性,实现对调度过程的双重优化;构造实时调度实例投入测试的结果证明了模型的绩效。另外,一个包含强化学习Agent与无学习Agent的混合机器环境被构建并测试其性能,测试结果表明:在Agent之间借助强化学习过程形成了某种隐性的合作,正是这种合作保证了高质量实时调度方案的输出。 This paper proposes a real-time scheduling model based on contract net protocol structure employing reinforcement learning agents. To this end, an R-learning procedure is elaborated and embedded in machine agents’decision process, enabling them to treat bid-invitations in more complicated way than in a simple contract net protocol environment. Efficiency of the proposed method is verified through experiments in a simulated real-time scheduling environment. Furthermore, the performance of mixed machine groups which comprises both reinforcement learning agents and non-reinforcement-learning agents shows that there is spontaneous implicit teamwork occurring between reinforcement learning agents, and this teamwork guarantees high quality output of the scheduling model.
出处 《计算机工程与应用》 CSCD 2014年第10期221-226,237,共7页 Computer Engineering and Applications
基金 广东省自然科学基金资助项目(No.8452902001001552)
关键词 R学习 合同网 多AGENT合作 实时调度 R-learning contract net protocol multi-agent cooperation real-time schedule
  • 相关文献

参考文献15

  • 1Smith R G.The contract net protocol :High-level communi- cation and control in a distributed problem Solver[J].IEEE Transactions on Computers, 1980, C- 19 (12) : 1104-1113. 被引量:1
  • 2张国海,江平宇,周光辉.多设计任务调度的非合作博弈研究[J].西安交通大学学报,2007,41(3):303-306. 被引量:6
  • 3周光辉,王蕊,江平宇,张国海.作业车间调度的非合作博弈模型与混合自适应遗传算法[J].西安交通大学学报,2010,44(5):35-39. 被引量:8
  • 4Ma Huiye, Leung Hofung.Agent-based CDAs and bidding strategies[M]//Bidding strategies in agent-based continuous double auctions.Basel: Birkhauser, 2008 : 9-28. 被引量:1
  • 5Martin A,Richard P.Genetic programming for the acqui- sition of double auction market strategies[M]//Advances in genetic programming.Cambridge: MIT Press, 1994: 355-368. 被引量:1
  • 6Zhang W, Dietterich T G.A reinforcement learning approach to job-shop scheduling[C]//Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc, 1995. 被引量:1
  • 7Palombarini J, Martinez E.SmartGantt-An intelligent system for real time rescheduling based on relational reinforcement learning[J].Expert Systems with Applications, 2012,39 ( 11 ) : 10251-10268. 被引量:1
  • 8Csanad C B, Laszlo M, Botond K.Reinforcement learning in a distributed market-based production control system[J]. Advanced Engineering Informatics, 2006,20(3 ) : 279-288. 被引量:1
  • 9Hsieh Fu-Shiung.Design of reconfiguration mechanism for holonic manufacturing systems based on formal models[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) : 1187-1199. 被引量:1
  • 10Li Ying, Zheng Jiaqiang, Yang Shanlin.Multi-agent-based fuzzy scheduling for shop floor[J].International Journal of Advanced Manufacturing Technology, 2010,49 (5/8) : 689-695. 被引量:1

二级参考文献33

  • 1黄洪钟,李丽,刘伟.并行工程中设计任务的动态调度[J].机械工程学报,2002,38(z1):164-167. 被引量:12
  • 2任东锋,方宗德.并行设计中任务调度问题的研究[J].计算机集成制造系统,2005,11(1):32-38. 被引量:18
  • 3JIANG Pingyu,ZHOU Guanghui,ZHAO Gang,et al.E-2-MES:an e-service-driven networked manufacturing platform for extended enterprises[J].International Journal of Computer Integrated Manufacturing,2007,20(2/3):127-142. 被引量:1
  • 4ZHOU Guanghui,JIANG Pingyu,ZHANG Guohai.Game theoretical framework for process plan decision of jobs in networked manufacturing[C]//Proceedings of the IEEE International Conference on Automation and Logistics.Piscataway,NJ USA:IEEE,2007:1868-1873. 被引量:1
  • 5SAKAWA M,MORI T.An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy due date[J].Computers & Industrial Engineering,1999,36(2):325-341. 被引量:1
  • 6MATTFELD D C,BIERWIRTH C.An efficient genetic algorithm for job shop scheduling with tardiness objectives[J].European Journal of Operational Research,2004,155(3):616-630. 被引量:1
  • 7YUN Y S.Genetic algorithm with fuzzy logic controller for preemptive and non-preemptive joh-shop scheduling problems[J].Computers & Industry Engineering,2002,43(3):623-644. 被引量:1
  • 8KIM B H.A new game-theoretic framework for maintenance strategy analysis[J].IEEE Transactions on Powet Systems,2003,18(2):698-706. 被引量:1
  • 9ALI R Y.An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry[J].Journal of Materials Processing Technology,2009,209(6):Z773-2780. 被引量:1
  • 10SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic algorithm[J].IEEE Tram on Systems,Man and Cybernetics,1994,24(4):656-667. 被引量:1

共引文献19

同被引文献10

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部