期刊文献+

改进的CenSurE特征和基于相加图像梯度的快速描述符 被引量:1

Improved CenSurE detector and a new rapid descriptor based on gradient of summed image patch
下载PDF
导出
摘要 CenSurE局部特征计算效率非常高,但是CenSurE特征的尺度采样是线性的,滤波器响应信号很稀疏,检测的特征重复率不高。采用对数尺度采样得到改进的CenSurE特征,获得了更高的检测性能。同时,提出基于相加图像梯度的快速描述符,称为GSIP。图像区域匹配和物体识别评价实验结果显示,和目前性能最优的SURF描述符相比,GSIP描述符独特性更强,速度更快,计算时间不到SURF描述符的1/2。 This paper proposed a new,real-time and robust local feature and descriptor,which can be applied to computer vision field with high demands in real-time.Since CenSurE has extremely efficient computation,it has got wide attention.Due to its linear scales,the filter response signal is very sparse and cannot acquire high repeatability.Therefore,this paper modified the detector using logarithmic scale sampling,and obtained better performance.The new rapid descriptor was based on gradient of the summed image patch,called GSIP.The GSIP descriptor has superior performance.An extensive experimental evaluation was performed to show that the GSIP descriptor increases the distinctiveness of local image descriptors for image region matching and object recognition compared with the state-of-the-art SURF descriptor.Furthermore,compared with SURF,GSIP achieves a two-fold speed increase.
出处 《计算机应用》 CSCD 北大核心 2011年第7期1818-1821,1858,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60872057) 浙江省自然科学基金资助项目(Y1101237R1090244Y1080212)
关键词 局部特征描述符 CENSURE 图像匹配 目标识别 local feature descriptor CenSurE image matching object recognition
  • 相关文献

参考文献21

  • 1MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 6(5):43-72. 被引量:1
  • 2MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 3LOWE D G. Object recognition from local scale-invariant features[C] // International Conference on Computer Vision. New York: IEEE, 1999:1150-1157. 被引量:1
  • 4LOWE D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 2(60):91-110. 被引量:1
  • 5BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1):59-73. 被引量:1
  • 6STEPHEN S, LOWE D G, LITTLE J. Vision-based global localization and mapping for mobile robots[J]. IEEE Transactions on Robotics, 2005, 21(3): 364- 375. 被引量:1
  • 7陈方,熊智,许允喜,刘建业.惯性组合导航系统中的快速景象匹配算法研究[J].宇航学报,2009,30(6):2308-2316. 被引量:24
  • 8MORENO P, BERNARDINO A, SANTOS-VICTOR J. Improving the SIFT descriptor with smooth derivative filters[J]. Pattern Recognition Letters, 2009, 30(1): 18-26. 被引量:1
  • 9LI CANLIN, MA LIZHUANG. A new framework for feature descriptor based on SIFT[J]. Pattern Recognition Letters, 2009, 30(5):544-557. 被引量:1
  • 10BAY H, TUYTELAARS T, van GOOL L. SURF: Speeded up robust features[C] // Proceedings of 10th European Conference on Computer Vision, LNCS 3951.Berlin:Springer,2006: 404-417. 被引量:1

二级参考文献14

  • 1冷雪飞,刘建业,熊智,邢广华.加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J].控制与决策,2006,21(1):42-45. 被引量:16
  • 2熊智,刘建业,冷雪飞.景象匹配辅助导航系统中的精确图象匹配算法研究[J].宇航学报,2006,27(4):680-685. 被引量:6
  • 3David G, I-owe. Object recognition from local scale-invariant features [J]. International Conference on Computer Vision, Corfu, Greece (September 1999) : 1150 - 1157. 被引量:1
  • 4David G, Lowe. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 2(60) : 91 - 110. 被引量:1
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615- 1630. 被引量:1
  • 6Matthew Brown, David G, Lowe. Unsupervised 3D object recognition and reconstruction in unordered datasets[J]. International Conference on 3 - D Digital Imaging and Modeling (3DIM 2005), Ottawa, Canada (June 2005) : 56 - 63. 被引量:1
  • 7Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[J]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004:511- 517. 被引量:1
  • 8Matthew Brown, David G, Lowe. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73. 被引量:1
  • 9STEPHEN S, LOWED G, LITTLE J. Vision-based global localization and mapping for mobile robots[ J]. IEEE Transactionson Robotics, 2005,21(3): 364- 375. 被引量:1
  • 10Fischler M, Bolles R C. Random sample consensus: a paradigm for model fitting and automatic cartography[J]. Comm. ACM, 1981, 6 (24) : 381 - 395. 被引量:1

共引文献23

同被引文献13

  • 1RUBLEE E, GARAGE W, PARK M, et al. ORB: an efficient alter- native to SIFT or SURF [ C]// IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011:2564 - 2571. 被引量:1
  • 2BROWN M, GANG H, WINDER S. Discriminative learning of local image descriptors [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): d-3-57. 被引量:1
  • 3AMBAI M, YOSHIDA Y. CARD: Compact and real-time descrip-tots [ C]//iEEE International Conference on Computer Vision. Bar- celona: IEEE, 2011:97-104. 被引量:1
  • 4CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features [ J]. ECCV'10: Proceedings of the llth European Conference on Computer Vision. Berlin: Springer-Verlag, 2010:778-792. 被引量:1
  • 5YU GUOSHEN, MOREL J-M. A fully affine invariant image compari- son method [ C]//ICASSP'09: Proceedings of the 2009 IEEE Interna- tional Conference on Acoustics, Speech and Signal Processing. Wash- ington, DC: IEEE computer Society: IEEE, 2009: 1597-1600. 被引量:1
  • 6BAY H, TUYTELAARS T, van GOOL L. SURF: speeded up ro- bust features [ J]. Computer Vision - ECCV 2006. Berlin: Springer-Verlag, 2006:404-417. 被引量:1
  • 7YAN K, SUKTHANKAR R. PCA-SIFY: a more distinctive repre- sentation for local image descriptors [ C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004,2:506-513. 被引量:1
  • 8LOWED G. Distinctive image features from scale-invariant key- points [ J]. International Journal of Computer Vision, 2004, 60 (2): 91-110. 被引量:1
  • 9ROSTEN E, DRUMMOND T. Machine learning for high-speed comer detection [ C] // Computer Vision - ECCV 2006. Berlin: Springer-Verlag, 2006:430 - 443. 被引量:1
  • 10ROSIN P L. Measuring corner properties [ J]. Computer Vision and Image Understanding, 1999, 73(2): 291 -307. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部