期刊文献+

超越概率贝叶斯判别分析方法及其在中长期径流预报中的应用 被引量:17

Exceedance probability method for mid-term and long-term streamflow prediction
下载PDF
导出
摘要 中长期径流预报是水文预报中的经典难题之一,其在防洪、水库调度及水资源管理中起着十分重要的作用。由于缺乏相应预见期的可靠气象预报资料,中长期径流预报一般采用统计方法。超越概率贝叶斯判别分析方法是一种数据驱动的非参数贝叶斯经验统计方法,通过设置不同的流量等级反复进行贝叶斯判别分析,对未来径流超过某一流量等级的概率(超越概率)进行预报。本文运用该方法对长江宜昌站、大通站的月、季径流预报进行了研究,其结果表明,超越概率贝叶斯判别分析方法能够有效实现宜昌站和大通站非汛期径流预报;对于汛期径流预报,采用厄尔尼诺和南方涛动等气象水文指标变量作为预报因子,是提高预报精度的可行途径。 Mid-term and long-term streamflow prediction is of vital importance in flood control, reservoir operation and water resources management. Due to the lack of reliable meteorological inputs, statistical method is commonly used to mid-term and long-term streamflow prediction. The Exceedance Probability Bayesian Discriminant Analysis Method is a Bayesian statistical method which relies on discriminant analysis to predict the probability of "future streamflow goes beyond a certain value" (Exceedance probability) by the historical predictand and predictor samples and real-time predictor information. This method has been used to predict the streamflow of Yichang and Datong Gauge Station, Yangtze River. The results show that the exceedance probability method is effective in predicting the non-flood season streamflow and is a viable approach for adopting hydro-meteorological indexes as predictor to promot prediction accuracy of flood season streamflow.
出处 《水利学报》 EI CSCD 北大核心 2011年第6期692-699,共8页 Journal of Hydraulic Engineering
基金 “十一五”国家科技支撑计划资助项目(2008BAB29B09-2 2008BAB29B08)
关键词 中长期径流预报 超越概率方法 贝叶斯判别分析 长江径流预报 mid-term and long-term streamflow prediction exceedance-probability method Bayesian Discriminant Analysis Yangtze River streamflow prediction
  • 相关文献

参考文献11

  • 1Piechota T C, Chiew F H S, Dracup J A, et al. Seasonal streamflow forecasting in eastern Australia and the E1 Nino Southern Oscillation[J]. Water Resources Research, 1998, 34(11) : 3035-3044. 被引量:1
  • 2Pieehota T C, Chiew F H S, Draeup J A, et al. Development of exceedance probability streamflow forecast[J] . Journal of Hydrologic Engineering, 2001,6(1) : 20-28. 被引量:1
  • 3Wang W-C, Kwok-Wing Chau, Chun-Tian Cheng, et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series [J]. Journal of Hydrology, 2009, 374 (3-4) : 294-306. 被引量:1
  • 4林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:114
  • 5Tootle G A, Piechota T C. Suwannee fiver long range streamflow forecasts based on seasonal climate predictors [J] . Journal of the American Water Resources Association, 2004, 40(2) : 523-532. 被引量:1
  • 6Soukup T L , Aziz O A, et al. Long lead-time streamflow forecasting of the North Platte River incorporating oceanic-atmospheric climate variability[J]. Journal of Hydrology, 2009, 368(1--4) : 131-142. 被引量:1
  • 7Bowman A W, Azzalini A. Applied Smoothing Techniques for Data Analysis [ M ] . New York: Oxford University Press, 1997. 被引量:1
  • 8Sharma A , Tarboton D G, Lall U . Streamflow simulation: a nonparametric approach [ J ] . Water Resources Research, 1997, 33(2): 291-308. 被引量:1
  • 9Sen Z, Altunkaynak A. Discussion of "Development of exceedance probability streamflow forecast"by Thomas C. Piechota, Francis H. S. Chiew, John A. Dracup, and Thomas A. McMabon[J] . Journal of Hydrologic Engineering, 2002, 7 (3) : 265-267. 被引量:1
  • 10Piechota T C, Chiew F H S, et al . Closure to "Development of exceedance probability streamflow forecast" by Thomas C. Piechota, Francis H. S. Chiew, John A. Dracup, and Thomas A. McMahon[J] . Journal of Hydrologic Engineering, 2002, 7(3): 267-267. 被引量:1

二级参考文献21

  • 1刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 2Box G E P,Jenkins G M.Time Series Analysis Forecasting and Control[M].San Francisco:Holden-Day,1976. 被引量:1
  • 3ASCE Task Committee.Artificial neural networks in hydrology-Ⅰ:Preliminary concepts[J].Journal of Hydrologic Engineering,2000,5(2):115-123. 被引量:1
  • 4ASCE Task Committee.Artificial neural networks in hydrology-Ⅱ:Hydrological applications[J].Journal of Hydrologic Engineering,2000,5(2):124-137. 被引量:1
  • 5Liong S Y,Sivapragasm C.Flood stage forecasting with SVM[J].Journal of the American Water Resources Association,2002,38(1):173-186. 被引量:1
  • 6Vapnik V.Statistical Learning Theory[M].New York:Springer,1998. 被引量:1
  • 7Smola A J,Schoelkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222. 被引量:1
  • 8Platt J.Fast training of support vector machines using sequential minimal optimization[A].Advances in Kernel MethodsSupport Vector Learning[C].Cambridge:MIT Press,1999.185-208. 被引量:1
  • 9Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[R].Technical report,Department of Computer Science and Information Engineering,National Taiwan University,2003. 被引量:1
  • 10Dong B,Cao C,Lee S E.Applying support vector machines to predict building energy consumption in tropical region[J].Energy and Buildings,2005,37:545-553. 被引量:1

共引文献113

同被引文献207

引证文献17

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部