期刊文献+

Cluster synchronization in a network of non-identical dynamic systems 被引量:2

Cluster synchronization in a network of non-identical dynamic systems
下载PDF
导出
摘要 Cluster synchronization in a network of non-identical dynamic systems is studied in this paper, using two-cluster synchronization for detailed analysis and discussion. The results show that the common intercluster coupling condition is not always needed for the diffusively coupled network. Several sufficient conditions are obtained by using the Schur unitary triangularization theorem, which extends previous results. Some numerical examples are presented for illustration. Cluster synchronization in a network of non-identical dynamic systems is studied in this paper, using two-cluster synchronization for detailed analysis and discussion. The results show that the common intercluster coupling condition is not always needed for the diffusively coupled network. Several sufficient conditions are obtained by using the Schur unitary triangularization theorem, which extends previous results. Some numerical examples are presented for illustration.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期78-88,共11页 中国物理B(英文版)
基金 Project supported by the "13115" Program, China (Grant No. 2008ZDKG-37) the National Natural Science Foundation of China (Grant Nos. 61072139, 61072106, 60804021, and 61001202) the Fundamental Research Funds for the Central Universities of China (Grant Nos. Y10000902036, JY10000902039, JY10000970001, and JY10000902001)
关键词 complex network cluster synchronization diffusive couplings Schur's theorem complex network, cluster synchronization, diffusive couplings, Schur's theorem
  • 相关文献

参考文献53

  • 1Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1. 被引量:1
  • 2Arenas A, Dfaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 460 93. 被引量:1
  • 3Albert R and Barab~si A L 2002 Rev. Mod. Phys. 74 47. 被引量:1
  • 4Strogatz S H 2001 Nature 410 268. 被引量:1
  • 5Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821. 被引量:1
  • 6Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660. 被引量:1
  • 7Haeri M and Emadzadeh A A 2006 Phys Lett. A 356 59. 被引量:1
  • 8Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109. 被引量:1
  • 9Wang X 2002 Int. J. Bifurc. Chaos 12 885. 被引量:1
  • 10Duan Z and Chen G 2009 IEEE Circuits and Systems II 56 679. 被引量:1

同被引文献33

  • 1Siljak D D and Zecevic A I.Control of large-scale systems:beyond decentralized feedback[J].Annual Reviews in Control,2005,29(2):169-179. 被引量:1
  • 2Duan Zhi-sheng,Wang Jin-zhi,Chen Guan-rong,et al..Stability analysis and decentralized control of a class ofcomplex dynamical networks[J].Automatica,2008,44(4):1028-1035. 被引量:1
  • 3Liu Hui,Lu Jun-an,Lv Jin-hu,et al..Structure identificationof uncertain general complex dynamical networks with timedelay[J].Automatica,2009,45(8):1799-1807. 被引量:1
  • 4Yao Jing,Guan Zhi-hong,and Hill D J.Passivity-basedcontrol and synchronization of general complex dynamicalnetworks[J].Automatica,2009,45(9):2107-2113. 被引量:1
  • 5Xu Yu-hua,Zhou Wu-neng,Fang Jian-an,et al..Structureidentification and adaptive synchronization of uncertaingeneral complex dynamical networks[J].Physics Letters A,2009,374(2):272-278. 被引量:1
  • 6Pecora L M and Carroll T L.Master stability functions forsynchronization coulped systems[J].Physical Review Letters,1998,80(10):2109-2112. 被引量:1
  • 7Sorrentino F and Porfiri M.Analysis of parametermismatches in the master stability function for networksynchronization[J].Europhysics Letters,2011,93(5):50002. 被引量:1
  • 8Wang X F and Chen G.Synchronization in scale-freedynamical networks:robustness and fragility[J].IEEETransactions on Circuits&Systems I,2002,49(1):54-62. 被引量:1
  • 9Wang Xiao-fan and Chen Guan-rong.Pinning control ofscale-free dynamical networks[J].Physica A,2002,310(3,4):521-531. 被引量:1
  • 10Barahona M and Pecora L M.Synchronization in Small-World Systems[J].Physical Review Letters,2002,89(5):054101. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部