期刊文献+

非耗散耦合复杂网络受控同步能力分析 被引量:2

Controlled Synchronizibility Analysis for Non-diffusively Coupled Complex Networks
下载PDF
导出
摘要 该文研究了非耗散耦合网络的受控同步能力问题。在分析非耗散耦合网络外耦合矩阵特征值分布规律的基础上,给出了非耗散耦合网络的同步控制律。发现外耦合矩阵最大最小特征值之差越小,网络受控同步能力越强,耦合强度越小,网络越有可能通过控制取得同步,但在某些情况下所需要的控制增益绝对值也越大。最后以Lorenz振子小世界网络在混沌轨道上的同步为例对相关结论的有效性进行了验证。 Controlled synchronizibility of non-diffusively coupled complex networks is studied.After the analysis of eigenvalues distribution of outer coupling matrix of non-diffusively coupled complex networks,control law for synchronize non-diffusively coupled complex networks is given.It is found that the smaller the distance between largest and smallest eigenvalues of outer coupling matrix,the stronger the controlled synchronizibility of non-diffusively coupled complex networks.It is also found that the smaller the coupling strength,the greater the possibility that the network can achieve controlled synchronization.However under certain condition a smaller coupling strength requires a larger control gain value.Finally a small-world network formed by coupled Lorenz oscillators which needs to be controlled to synchronize onto chaotic orbit is given as an example to illustrate the effectiveness of the results.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第3期722-727,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(10975099) 教育部博士点基金(20103120110008) 上海市基础研究重点项目(09JC1408000) 上海市重点学科建设项目(S30501) 上海理工大学光电信息与计算机工程学院教师创新能力建设项目(GDCX-Y-1212)资助课题
关键词 非耗散耦合网络 受控同步能力 外耦合矩阵 耦合强度 Non-diffusively coupled complex networks Controlled synchronizibility Outer coupling matrix Coupling strength
  • 相关文献

参考文献24

  • 1郭雷,许晓鸣主编..复杂网络[M].上海:上海科技教育出版社,2006:445.
  • 2Dorogovtsev S N.Lectures on Complex Networks[M].Oxford:Clarendon Press,2010:1-15. 被引量:1
  • 3Chen Guan-rong,Wang Xiao-fan,Li Xiang,et al..SomeRecent Advances in Complex Networks Synchronization.In:Kyamakya K.Recent Advances in Nonlinear Dynamics andSynchronization[M].Springer-Verlag Berlin Heidelberg,2009:3-16. 被引量:1
  • 4Delellis P,Bernardo M,Gorochowski E,et al..Synchronazation and control of complex networks viacontraction,adaption and evolution[J].IEEE Circuits andSystems Magazine,2010,10(3):64-82. 被引量:1
  • 5Sepulchre J A and Babloyantz A.Controlling chaos in anetwork of oscillators[J].Physical Review E,1993,48(2):945-950. 被引量:1
  • 6Siljak D D and Zecevic A I.Control of large-scale systems:beyond decentralized feedback[J].Annual Reviews in Control,2005,29(2):169-179. 被引量:1
  • 7Duan Zhi-sheng,Wang Jin-zhi,Chen Guan-rong,et al..Stability analysis and decentralized control of a class ofcomplex dynamical networks[J].Automatica,2008,44(4):1028-1035. 被引量:1
  • 8Liu Hui,Lu Jun-an,Lv Jin-hu,et al..Structure identificationof uncertain general complex dynamical networks with timedelay[J].Automatica,2009,45(8):1799-1807. 被引量:1
  • 9Yao Jing,Guan Zhi-hong,and Hill D J.Passivity-basedcontrol and synchronization of general complex dynamicalnetworks[J].Automatica,2009,45(9):2107-2113. 被引量:1
  • 10Xu Yu-hua,Zhou Wu-neng,Fang Jian-an,et al..Structureidentification and adaptive synchronization of uncertaingeneral complex dynamical networks[J].Physics Letters A,2009,374(2):272-278. 被引量:1

二级参考文献66

  • 1韩建群,朱义胜.一种利用数字信道实现混沌保密通信方法[J].电子与信息学报,2006,28(12):2359-2361. 被引量:5
  • 2赵柏山,朱义胜.一种改进的混沌掩盖技术[J].电子与信息学报,2007,29(3):699-701. 被引量:9
  • 3Wang Y W, Guan Z H, and Wen X J. Adaptive synchronization for Chen chaotic system with fully unknown parameters [J]. Chaos, Solitons & Fractals, 2004, 19(4): 899-903. 被引量:1
  • 4Kocarev L and Parlitz U. General approach for chaotic synchronization with application to communication [J]. Phys. Rev. Lett, 1995, 74(25): 5028-5031. 被引量:1
  • 5Yang T and Chua L O. Secure communication via chaotic parameter modulation[J]. IEEE Trans. on Circuits Syst. I, 1996, 43(9): 817-819. 被引量:1
  • 6Peccora L M and Carroll T L. Synchronization in chaotic system [J]. Phys Rev Lett, 1990, 64(8): 821-824. 被引量:1
  • 7Yu Y G. Adaptive synchronization of a unified chaotic system [J]. Chaos, Solitons & Fractals, 2008, 36(2): 329-333. 被引量:1
  • 8Chen D L, Sun J T, and Huang C S. Impulsive control and synchronization of general chaotic system[J]. Chaos, Solitons Fractals, 2006, 28(1): 213-218. 被引量:1
  • 9Yassen M T. Controlling, synchronization and tracking chaotic Liu system using active backstepping design[J]. Phys. Rev Left, 2007, 360(4-5): 582-587. 被引量:1
  • 10Hassan S and Mohammad S. Adaptive synchronization of two different chaotic systems with time varying unknown parameters [J]. Chaos, Solitons & Fractals, 2008, 37(1): 125-136. 被引量:1

共引文献20

同被引文献30

  • 1POTIIE G,KAISER W. Wireless integrated sensors[J]. Communications of the ACM,2000(5) :51 -58. 被引量:1
  • 2SUN YI, JIANG QING. A Clustering Scheme for Reachback Firefly Synchronicity in Wireless Sensor Netwroks[C]//In Proc. 3 IEEE International Conference on Network Infrastructure and Digital Content, IC - NIDC 2012:27 -31. 被引量:1
  • 3GANERWAL S, KUMAR R, SRIVAST AVA M. Timing sync protocol for sensor networks [C]. Pro- ceedings of the 1st ACM Conference on Embedded Networked Sensor Systems. Los Angeles,2003:138 -149. 被引量:1
  • 4PANDIT S A and AMRITKAR R E. Characterization and control of small-world networks[J]. Physical Review E, 1999, 60(2A): 1119-1122. 被引量:1
  • 5STROGATZ S H. Exploring complex networks[J]. Nature, 2001, 410: 268-276. 被引量:1
  • 6Jinhu and CHEN Guanrong. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 841-846. 被引量:1
  • 7LIANG Yi, WANG Xingyuan, and EUSTACE J. Adaptive synchronization in complex networks with non-delay and variable delay couplings via pining control[J]. Neurocomputing, 2014, 123: 292-298. 被引量:1
  • 8LIANG Yi and WANG Xingyuan. Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods[J]. Physica A, 2014, 395: 434-444. 被引量:1
  • 9LIU Heng, WANG Xingyuan, and TAN Guozhen. Adaptive cluster synchronization of directed complex networks with time delays[J]. PLoS ONE, 2014, 9(4): e95505. 被引量:1
  • 10LIU Heng, WANG Xingyuan, and TAN Guozhen. Structure identification of uncertain complex networks based on anticipatory projective synchronization[J]. PLoS ONE, 2015, 10(10): e0139804. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部