期刊文献+

基于多分辨率分析和支持向量机的电力电子电路故障诊断技术 被引量:4

Fault Diagnosis Technology Based on Multi-resolution Analysis and Support Vector Machine in Power Electronic Circuit
下载PDF
导出
摘要 将小波多分辨率分析(multi-resolution analysis,MRA)和支持向量机(support vector machine,SVM)应用于电力电子电路故障的诊断.首先采用小波多分辨率分析对电力电子故障信号进行特征处理,再用支持向量机理论建立多类故障分类器来识别电力电子电路故障,仿真结果验证了该方法的正确性和有效性. Wavelet multi-resolution analysis(MRA) method and support vector machine(SVM) method are applied to diagnose faults of power electronic circuits.The paper uses the wavelet MRA to deal with the characteristics of power electronic fault signal,and then identifies the fault diagnosis of power electronic circuit by the multi-class fault classifier based on SVM.Satisfied simulation results are obtained.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第3期300-303,共4页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(60804026)
关键词 小波多分辨率分析 支持向量机 电力电子电路 故障诊断 wavelet multi-resolution analysis support vector machine power electronics circuit fault diagnosis
  • 相关文献

参考文献3

二级参考文献15

  • 1李敏远,陈如清.一种基于模式识别的可控整流电路故障诊断方法[J].电工技术学报,2004,19(7):53-58. 被引量:16
  • 2张志学,马皓,毛兴云.基于混杂系统模型和事件辨识的电力电子电路故障诊断[J].中国电机工程学报,2005,25(3):49-53. 被引量:55
  • 3Liu Aimin, Lin Xin, Liu Xiangdong. Fault diagnosis method of high voltage circuit breaker based on (RBF) artificial neural network [C]. 2005 /EEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China, 2005: 1-4. 被引量:1
  • 4Yang B S, Hart T, An J L. Neural network for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 645- 647. 被引量:1
  • 5Luo Zhiyong, Shi Zhongke. Wavelet neural network method for fault diagnosis of push-pull circuits[C]. Proceedings of the 4^th International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005: 3327-3332. 被引量:1
  • 6Li Erguo, Yu Jinshou. Input-training neural network-based nonlinear principal component analysis approach for fault diagnosis [C]. Proceedings of the 4^th World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 4: 2755-2759. 被引量:1
  • 7Lee J M, Yoo C K, Choi S W. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. 被引量:1
  • 8Lu Peng, Xu Daping, Liu Yibino Method of fault diagnosis on multilayer BP wavelet networks and its applications[C]. Proceedings of the 3^rd International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004: 3296-3299. 被引量:1
  • 9Son H I, Kim T J, Kang D W. Fault diagnosis and neutral point voltage control when the 3-level inverter faults occur[C]. 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004: 4558-4563. 被引量:1
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2342

同被引文献36

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部