期刊文献+

基于粗糙集和支持向量机的水电机组振动故障诊断 被引量:32

Vibration Fault Diagnosis of Hydro-Turbine Generating Unit Based on Rough Sets and Support Vector Machine
下载PDF
导出
摘要 提出应用粗糙集和支持向量机水电机组振动的故障诊断模型。运用粗糙集理论对水电机组振动信号的属性特征进行预处理,在约简去除其冗余属性后得到决策表,将决策表作为支持向量机的学习样本,通过训练,使构建的支持向量机多分类器能够反映属性特征和故障类型的映射关系,从而达到故障诊断的目的。测试结果表明,与常规方法相比,应用粗糙集和支持向量机相结合的方法进行故障诊断具有简单有效、诊断速度快和良好的鲁棒性等优点,是一种有效的诊断方法。 A model of the vibration fault diagnosis of hydro-turbine generating unit was investigated by the method of combining rough sets (RS) theory and support vector machine (SVM) multi-classifier, according to complementary strategy. Using RS to preprocess the attribute character of vibration signal of hydro-turbine generating unit, and then a key decision table was obtained after deducting redundant attributes. The key decision table was acted as a learning sample to train the constructed SVM multi-classifier, thus the mapping relationship between the fault and the attribute character was formed and the fault diagnosis was realized by the trained SVM multi-classifier. This method of combining RS and SVM is efficiently for the diagnosis of the unit faults in comparison with the traditional method. The simulation experimental results show that the proposed method is simpler, faster and more robust.
出处 《电工技术学报》 EI CSCD 北大核心 2006年第10期117-122,共6页 Transactions of China Electrotechnical Society
基金 国家自然基金重点资助项目(90410019)
关键词 水电机组 故障诊断 频谱分析 粗糙集 支持向量机 Hydro-turbine generating unit, fault diagnosis, spectrum analysis, rough sets, SVM
  • 相关文献

参考文献12

二级参考文献34

  • 1张家玺,董秀林,朱均,屈梁生.基于模糊理论的发动机异响实时诊断方法[J].农业机械学报,1997,28(S1):81-85. 被引量:2
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3WROBLEWSKI J.Finding minimal reducts using genetic algorithms [A]..Procceedings of the Second Annual Join Conference on Information Sciences [C].NC:Wrightsville Beach,1995.186-189. 被引量:1
  • 4[2]CHEN Xiang-hui, ZHU Shan-jun, JI Yin-dong. Entropy based uncertainty measures for classification rules with inconsistency tolerance[A].IEEE International Conference on Systems, Man, and Cybernetics[C]. Nashville: IEEE,2000,4:2816-2821. 被引量:1
  • 5[4]NILSSON N J. Artificial intelligence: A new synthesis[M].Beijing:Machine Press,1999. 被引量:1
  • 6[5]SHEN Li-xiang, TAY F E H,QU Liang-sheng, et al. Fault diagnosis using rough sets theory[J].Computers in Industry,2000, (43): 61-72. 被引量:1
  • 7[6]SHI Wen-gang,Wang Ri-xin,Huang Wen-hu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps[A].Canadian Conference on Electrical and Computer Engineering[C]. Toronto: CCECC, 2001,2:1247-1250. 被引量:1
  • 8张家玺,农业机械学报,1997年,28卷,77页 被引量:1
  • 9王钰,模式识别与人工智能,1996年,9卷,4期,337页 被引量:1
  • 10Vapnic V.The Nature of Statistical Learning[M].New York:Springer,1998. 被引量:1

共引文献135

同被引文献350

引证文献32

二级引证文献470

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部