期刊文献+

RMi岩体指标评价法优化及其应用 被引量:6

Optimization of RMi rockmass quality evaluation method and its application
下载PDF
导出
摘要 为了克服传统岩体质量评价方法(RMR法、Q法等)中评价参数难以确定、对质量较差岩体评价结果精度不够等缺陷,介绍RMi法中岩块单轴抗压强度σc与节理裂隙参数Jp的确定思路,对其进行优化,并将其与Hoek-Brown失效准则进行有效结合。结合工程实例对得到的围岩类别及岩体力学参数予以验证。研究结果表明:该方法参数确定简单,应用范围广,可精确地实现对不同岩体质量评价及力学参数的估算,其研究成果可为工程设计施工提供重要依据。 In order to coincide the actual performance and effectively reduce the uncertainty of rock mass parameters and the inaccurate evaluation of weakness rock mass quality by these traditional cavern rock quality evaluation methods (RMR, Q), the uniaxial compressive strength of intact rock ac and jointing parameter Jp in RMi (Rock mass index) method were introduced and optimized, and the RMi method was combined with the Hoek-Brown Failure Criterion. Then in order to test its rationality, the RMi was used to a hydropower project of the southwest in China. The results show that the evaluation parameters of this method are easily acquired by the simple indoor test and the field survey, and its engineering application is also more wider than these traditional rock quality evaluation methods. So the research achievements of the RMi can provide the sufficient basis to the design and construction of the engineering.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期1375-1383,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(41072218)
关键词 RMi法 参数优化 围岩分类 岩体力学参数估算 Hoek-Brown失效准则 RMi method parameter optimization rock classification estimation of mechanical parameters of rock mass Hoek-Brown failure criterion
  • 相关文献

参考文献6

二级参考文献40

  • 1郝哲,万明富,刘斌,常春.韩家岭隧道围岩物理力学参数反分析[J].东北大学学报(自然科学版),2005,26(3):300-303. 被引量:26
  • 2冯夏庭.岩石力学智能化的研究思路[J].岩石力学与工程学报,1994,13(3):205-208. 被引量:16
  • 3佘跃心.用神经网络残余Kriging预测场地液化势[J].成都理工大学学报(自然科学版),2005,32(4):368-372. 被引量:2
  • 4刘勇.非数值并行算法(第二册)-遗传算法[M].科学出版社,1997.1. 被引量:7
  • 5FENG X T, ZHANG Z Q, SHENG Q. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(7): 1039-- 1054. 被引量:1
  • 6SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, (2): 568 --576. 被引量:1
  • 7SPECHT D F. The general regression neural network -Rediscovered[J]. Neural Networks, 1993, 6(7): 1033-- 1034. 被引量:1
  • 8[1]Palmstrom A. Characterizing rock masses by the RMI for use in practical rock engineering. Part One: The development of the rock mass index[J]. Tunneling and Underground Space Technology, 1996,11(2). 被引量:1
  • 9[2]Palmstrom A. Characterizing rock masses by the RMI for use in parctical rock engineering. Part Two: Some practical applications of the rock mass index[J]. Tunneling and Underground Space Technology, 1996,11 (3): 287~ 303. 被引量:1
  • 10Feng Xiating,Int J Rock Mech Min Sci,1997年,1期,135页 被引量:1

共引文献208

同被引文献57

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部