期刊文献+

用神经网络残余Kriging预测场地液化势 被引量:2

Prediction of site liquefaction potential by the neural network residual Kriging
下载PDF
导出
摘要 提出了基于神经网络残余Kriging的场地液化势数据预测模型。利用传统的地质统计学方法中的交叉验证技术来寻找网络参数Spread。在最优网络参数下,GRNN网络较好地映射了场地液化势的非线性趋势,再借助于Kriging对残余分量进行数据空间结构分析和估值。计算结果表明,GRNN网络预测的非线性趋势较好地刻划了场地液化势数据的全局特征,其非线性映射能力要高于趋势面技术。去势后的场地液化势残余分量满足本征假设条件,可以很方便地用Kriging方法来估值。本法可以嵌入岩土工程决策系统对未勘察区域进行场地液化预测和评价。 This paper presents the prediction model for liquefaction potential of a two-dimension site based on the neural network residual Kriging. Neural parameter Spread can be searched by means of the cross-validation technique of Kriging. The large-scale nonlinear trend of spatial data can be modeled by means of neural network with the optimal parameter and the residual component can be analyzed by the ordinary Kriging. The study result indicates that the generalized regression neural network can map thenonlineal drift (trend). The result obtained in the paper is better than that of the ordinary Kriging estimator. The model can be applied to the decision and evaluation system based on GIS to predict and evaluate the engineering properties of unexplored sites.
作者 佘跃心
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期368-372,共5页 Journal of Chengdu University of Technology: Science & Technology Edition
关键词 人工神经网络 KRIGING 场地 预测 液化势 liquefaction potential neural network Kriging site prediction
  • 相关文献

参考文献12

  • 1孙洪泉编..地质统计学及其应用[M].徐州:中国矿业大学出版社,1990:282.
  • 2程强,罗书学,高新强.相关函数法计算相关距离的分析探讨[J].岩土力学,2000,21(3):281-283. 被引量:24
  • 3Shahin M A, Jaksa M B, Maier H R. Artificial neural network applications in geotechnical engineering[J].Australian Geomechanics, 2001, (3) : 49-62. 被引量:1
  • 4Adeli H. Neural networks in civil engineering: 1989-2000 [J]. Computer-aided Civil and Infrastructure Engineering, 2001, 16: 126-142. 被引量:1
  • 5Blackard Jock A, Denis J D. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables[J]. Computers and Electronics in Agriculture, 1999,24 (6): 131-151. 被引量:1
  • 6Juang C H, Jiang T, Christopher R A. Three-dimensional site characterization : neural network approach[J]. Geotechnique, 2001, 51(9):799-809. 被引量:1
  • 7Kanevsky M R, Arutyunyan L B, Demyanov V, et al.Artificial neural networks and spatial estimations of Chernobyl Fallout[J]. Geoinformatics, 1995, 7 ( 1 - 2 ) : 5-11. 被引量:1
  • 8Demyanov V, Kanevsky M, Chernov S, et al. Neural network residual Kriging application for climatic data[J].Journal of Geographic Information and Decision Analysis,1998, 2( 2): 215-232. 被引量:1
  • 9Demyanov V, Kanevsky M, Chernov S, et al. Wavenet residual Kriging vs. neural network residual Kriging[J].Stochastic Environment Research and Risk Assessment,2001, (15): 18-32. 被引量:1
  • 10Parsons R L, Frost J D. Evaluating site investigation quality using GIS and geostatistics[J]. Journal of Geotechnical and Geoenviromental Engineering, 2001,128(6): 451-461. 被引量:1

二级参考文献20

  • 1高大钊.关于岩土设计参数标准值计算公式的讨论[J].工程勘察,1996,24(3):5-8. 被引量:19
  • 2Vanmarcke, E.H. Porbabilistic modeling of soil profiles [ J].Journal of the Geotechnical Engineering Division, ASCE, 1977, Vol.103, No. GT11:1227-1246. 被引量:1
  • 3Gordon, A.F. Random field Modeling of CPT data [J]. J. Geotech. And Geoenvir. Engrg., ASCE, 1999, 125 ( 6 ), 486-498. 被引量:1
  • 4Soulie, M., Montes, P. and Silvestd, V. Modeling spatial vari ability of soil parameters [ J ]. Can. Geotech. 1990, J.27:617-630. 被引量:1
  • 5Phoon, K.K. and Kulhawy, F.H. Characterization of geotechnical variability[ J ]. Can. Geotech. 1999, J.36:612-624. 被引量:1
  • 6Juang. C.H., Jiang. T. and Christopher. R.A. Three-dimemion site characterization: neural networks approach [ J ]. Geotechnique.2000, Vol.51. No.9:799-809. 被引量:1
  • 7Mohamed A. Shahin, Mark B. Jaksa, Holger R. Maier.Artificial neural network applications in geotechnical engineering[J]. Australian Geomechanics, 2001, (3):49-62. 被引量:1
  • 8Hojjat Adeli. Neural networks in civil engineering: 1989-2000[J]. Computer-aided Civil and Infrastructure Engineering, 2001, 16: 126-142. 被引量:1
  • 9Blackard, Jock A, Denis J Dean. Comparative accuracies of artificial neural networks and discriminant analysis in Predicting eorest cover types from cartographic variables[J]. Computers and Electronics in Agriculture,1999, 24:131-151. 被引量:1
  • 10Kanevsky M, Arutyunyan R, Bolshov, L, Demyanov V, Maignan M. Artificial neural networks and spatial estimations of chernobyl fallout[J]. Geoinformatics, 1995,7(1-2): 5-11. 被引量:1

共引文献27

同被引文献22

引证文献2

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部