期刊文献+

基于RBF模糊神经网络的信息安全风险评估 被引量:16

Risk assessment of information security based on RBF fuzzy neural network
下载PDF
导出
摘要 针对传统信息安全风险评估方法的单一性和主观性,提出了新的基于RBF模糊神经网络的信息安全风险评估方法。用模糊集合来模糊化影响评估的因素,构造网络的输入输出,用模糊规则来模拟因素之间的关系,采用增量型模糊神经网络训练方法和批处理型模糊神经网络训练方法相结合的方法来训练网络,并对从模糊规则导出的风险等级去模糊化,得到信息系统的风险指数。搭建了该RBF模糊神经网络结构,并对网络进行了学习和训练,同时与BP神经网络做了对比实验,结果表明,该方法能对信息系统的安全性做出准确的评估。 For the traditional method of information security risk assessment is single and subjective, a new information security risk assessment method called fuzzy neural network based on RBF is proposed. The factors that impact assessment are fuzzyed by fuzzy set, so the network' s input and output is constructed. The relationship between factors is simulated by fuzzy rules, the training method that include incremental neural network training method and batch method of fuzzy neural network are used. At last the risk index of infor- mation system is got by fuzzy rules derived from the level of risk to the fuzzy. The RBF fuzzy neural network is built, and the network is learnt and trained, and compared to the BP neural network, the result showed that the RBF fuzzy neural network is more effectivity.
作者 阮慧 党德鹏
出处 《计算机工程与设计》 CSCD 北大核心 2011年第6期2113-2115,2128,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60940032 61073034) 国家"十一五"科技支撑计划重大基金项目(2006BAK01A07) 国家"十一五"科技支撑计划重点基金项目(2006BAC18B06)
关键词 RBF模糊神经网络 信息安全 风险评估 训练方法 BP神经网络 RBF fuzzy neural network security of information risk assessment training method BP neural network
  • 相关文献

参考文献8

二级参考文献64

  • 1王岩,周春光,黄艳新,丰小月.基于最小不确定性神经网络的茶味觉信号识别[J].计算机研究与发展,2005,42(1):66-71. 被引量:3
  • 2李道伦,卢德唐,孔祥言.基于径向基函数网络的隐式曲线[J].计算机研究与发展,2005,42(4):599-603. 被引量:8
  • 3周井泉,张顺颐.基于独立变量的神经网络的最短路径计算[J].电路与系统学报,2005,10(4):61-65. 被引量:1
  • 4Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Proc. of the Parrallel Distributed Processing: Explorations in the Microstructure of Cognition 1-Foundations. 1986. 318-362. 被引量:1
  • 5Weijters A. The BP-SOM architecture and learning rule. Neural Processing Letters, 1995,2(6):13-16. 被引量:1
  • 6Kohonen T. Self-Organisation and Associative Memory. Berlin, Springer-Verlag, 1989. 被引量:1
  • 7Ridella S, Rovetta S, Zunino R. Circular back-propagation networks embed vector quantization. IEEE Trans. and Neural Networks, 1999,10(4) :972-975. 被引量:1
  • 8Dai Q, Chen SC, Zhang BZ. Improved CBP neural network model with applications in time series prediction. Neural Processing Letters, 2003,18:197-211. 被引量:1
  • 9Dai Q, Chen SC. Chained DLS-ICBP neural networks with multiple steps time series prediction. Neural Processing Letters, 2005, 21(2):95-107. 被引量:1
  • 10Chen SC, Dai Q. DLS-ICBP neural networks with applications in time series prediction. Neural Computing & Application, 2005,14: 250-255. 被引量:1

共引文献341

同被引文献111

引证文献16

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部