期刊文献+

具有染病者输入的离散SIR传染病模型分析 被引量:3

Analysis of a discrete-time SIR epidemic model with infected recruitment
下载PDF
导出
摘要 引入相应的概率建立了具有染病者输入的离散SIR传染病模型,确定了决定其动力学性态的阈值.在阈值之下模型仅存在无病平衡点,且无病平衡点是全局渐近稳定的;在阈值之上模型是一致持续的,有唯一的地方病平衡点存在,且地方病平衡点是局部渐近稳定的. The relevant probability is introduced to establish the discrete-time SIR epidemic model with infected recruiment and the threshold determining its dynamical behavior is found.For this model,below the threshold only the disease-free equilibrium exists which is globally asymptotically stable.Above the threshold the model is uniformly persistent and a unique endemic equilibrium exists which is locally asymptotically stable.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2011年第1期55-60,共6页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11071256)
关键词 离散传染病模型 动力学性态 平衡点 稳定性 discrete-time epidemic model dynamical behavior equilibrium stability
  • 相关文献

参考文献8

  • 1Castillo-Chavez C,Yakubu Abdul-Aziz.A Discrete-time S-I-S models with complex dynamics[J].Nonlinear Anal,2001,47:4753-4762. 被引量:1
  • 2Franke John E,Yakubu Abdul-Aziz.Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models[J].J Math Bilo,2008,57:755-790. 被引量:1
  • 3Yakubu Abdul-Aziz.Allee effects in a discrete-time SIS epidemic model with infected newborns[J].J Differ Equ Appl,2007,13(4):341-356. 被引量:1
  • 4Josef Hofbauer,Joseph W H So.Uniform persistence and Repellors for maps[J].Proc Amer Math Soc,1989,107(4):1129-1142. 被引量:1
  • 5Elaydi S N.An Introduction to Difference Equations,Third Edition[M].New York:SpringerVerlag,2004. 被引量:1
  • 6Allen Linda J S,Burgin Amy M.Comparison of deterministic and stochastic SIS and SIR models in discrete time[J].Math Biosci,2000,163:1-33. 被引量:1
  • 7Jang S R J.Backward bifurcation in a discrete SIS model with vaccination[J].J Biol Syst,2008,16(4):479-494. 被引量:1
  • 8Li Jianquan,Ma Zhien,Brauer F.Global analysis of discrete-time SI and SIS epidemic models[J].Math Biosci Eng,2007,4(4):699-710. 被引量:1

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部