摘要
引入相应的概率建立了具有染病者输入的离散SIR传染病模型,确定了决定其动力学性态的阈值.在阈值之下模型仅存在无病平衡点,且无病平衡点是全局渐近稳定的;在阈值之上模型是一致持续的,有唯一的地方病平衡点存在,且地方病平衡点是局部渐近稳定的.
The relevant probability is introduced to establish the discrete-time SIR epidemic model with infected recruiment and the threshold determining its dynamical behavior is found.For this model,below the threshold only the disease-free equilibrium exists which is globally asymptotically stable.Above the threshold the model is uniformly persistent and a unique endemic equilibrium exists which is locally asymptotically stable.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2011年第1期55-60,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11071256)
关键词
离散传染病模型
动力学性态
平衡点
稳定性
discrete-time epidemic model
dynamical behavior
equilibrium
stability