期刊文献+

基于双边滤波的POCS超分辨率图像序列重建算法 被引量:4

POCS super resolution reconstruction method for image sequences based on bilateral filter
下载PDF
导出
摘要 针对传统凸集投影(POCS)超分辨率图像序列重建算法使用高斯滤波器来估计点扩散函数(PSF)导致边缘模糊的现象,本文采用双边滤波器来估计PSF,双边滤波方法是将高斯函数和图像亮度信息相乘,优化后的权系数再与图像作卷积,使重建后的图像边缘得到很好保持。运动估计是POCS超分辨率图像序列重建算法的关键技术,本文选择结合图像金字塔的光流估计对图像序列进行配准,得到更加精确的估计结果。实验表明,可以使重建图像取得良好的视觉效果。 The traditional projections onto convex sets(POCS) super-resolution image reconstruction method leads to the blur edge by using Gaussian filter,so we present bilateral filter instead of Gaussian filter to estimate the point spread function(PSF).The bilateral filter can be got by Gaussian function multiplied with image brightness information.Finally the optimized weight coefficient makes convolution with the image so that the reconstructed image can keep the good edge.Motion estimation of image sequences is a key technology in the POCS super-resolution image reconstruction method.Optical flow estimation can get more accurate estimation results combining with image pyramid for image registration.The results of experiments show that the reconstructed image can achieve good visual effects.
出处 《中国体视学与图像分析》 2011年第1期84-88,共5页 Chinese Journal of Stereology and Image Analysis
基金 北京市自然科学基金项目(4092006)
关键词 超分辨率重建 POCS(凸集投影) 双边滤波器 光流估计 super-resolution reconstruction POCS(Projections onto Convex Sets) bilateral filter optical flow estimation
  • 相关文献

参考文献8

  • 1Ogawa T, Haseyama M. Semantic image retrieval based on POCS algorithm using kernel PCA and its performance verification[ C ]//ISCE09, IEEE 13^th Internatioinal Symposium on Consumer Electronics. Kyoto: 2009:582 - 583. 被引量:1
  • 2Protter M, Elad M. Superresolution with probabilistic motion estimation[ J]. IEEE Transactions on Image Processing, 2009, 18(8): 1899-1904. 被引量:1
  • 3Fernando W S P, Udawatta L, Pathirana P. Identification of moving obstacles with pyramidal lucas kanade optical flow and k means clustering[ C]//2007 the 3rd International Conference on Information and Automation for Sustainability. Melbourne: The Institute of Electrical and Electronics Engineers ,2007 : 111 - 117. 被引量:1
  • 4Tamgade S N, Bora V R. Motionvector estimation of video image by pyramidal implementation of lucas kanade optical flow [ C ]//2009 Second International Conference on Emerging Trends in Engineering and Technology. Nagpur: 2009:914-917. 被引量:1
  • 5Horn B K P, Schunck B G. Determining optical flow [ J]. Artificial Intelligence, 1981, 185 - 203. 被引量:1
  • 6范冲,龚健雅,朱建军.一种基于去混叠影像配准方法的POCS超分辨率序列图像重建[J].测绘学报,2006,35(4):358-363. 被引量:12
  • 7Zhang Fan, Zhu Qidan. Super-resolution image reconstruction for Omni-Vision based on POCS[ C]//CCDC'09 Proceedings of the 21st Annual International Conference on Chinese Control and Decision Conference. Guilin: IEEE Press, 2009:5045-5049. 被引量:1
  • 8Tomasi C, Manduchi R. Bilateral filtering for gray and color images [ C ]//Proceedings of the 1998 IEEE International Conference on Computer Vision. Bombay, India: 1998 : 839 - 846. 被引量:1

二级参考文献17

  • 1HARRIS J L, Diffraction and Resolving Power [J]. JOSA,1964, 54(7):931-936. 被引量:1
  • 2GOODMAN J W. Introduction to Fourier Optics [ M ].NewYork: Mc Graw Hill, 1968. 被引量:1
  • 3TSAI R Y, HUANG T S. Muhiframe hnage Restoration and Registration [ J]. Advances in Computer Vision and Image Processing, 1984, (1) : 101-106. 被引量:1
  • 4HUNT B R. Super Resolution of hnages: Algorithms, Principles, Performance [Jl- International Journal of Imaging Systems and Technology, 1995, (6) :297-304. 被引量:1
  • 5HUNT B R, SEMENTILL P. Description of a Poisson Imagery Super Resolution Algorithm. In Astronomical Data Analysis Software and Systems [ R]. SanFrancisco: Astronomical Society of the Pacific, 1992. 被引量:1
  • 6ELAD M, FEUER A, Restoration of A Single Super Resolution hnage from Several Blurred, Noisy and under Sampled Measured Images [J]. IEEE Trans IP, 1997,6(12): 1646-1658. 被引量:1
  • 7BROWN L. Survey of hnage Registration Techniques [J].ACM Computing Surveys, 1992, 24 (12): 325-376. 被引量:1
  • 8BERGEN J R, ANANDAN P, HANNA K J, et al. Hierarchical Model-based Motion Estimation [ A]. Second European Conference on Computer Vision[C]. [s.l]:[s. n.], 1992.237-252. 被引量:1
  • 9KEREN D, PELEG S, BRADA R. Image Sequence Enhancement Using Sub-pixel Displacement [ A]. Proceedings IEEE Conference on Computer Vision and Pattern Recognition[C].[s.l.]:[s.n.], 1988.742-746. 被引量:1
  • 10MARCEL B, BRIOT M, MURRIETA R.Calcul de Translation et Rotation Par la Transformation de Fourier [J]. Traitement du Signal, 1997, 14(2): 135-149. 被引量:1

共引文献11

同被引文献41

  • 1肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报,2009,35(1):108-113. 被引量:13
  • 2王付新,黄毓瑜,孟偲,王田苗.三维重建中特征点提取算法的研究与实现[J].工程图学学报,2007,28(3):91-96. 被引量:20
  • 3张军,王辅忠.强噪声背景下识别高频弱信号的方法研究[J].微计算机信息,2007,23(06S):293-294. 被引量:3
  • 4Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super- resolution image reconstruction: a technical overview [ J]. IEEE Signal Processing Magazine, May 2003: 21 - 36. 被引量:1
  • 5Tsai R Y, Thomas Huang. Multiple frame image restora- tion and registration [ J ]. Advances in Computer Vision and Image Processing, Greenwich, CT: JAI Press lnc 1984:317 -339. 被引量:1
  • 6Salari E, Gerchberg B. Super-resolution using an en- hanced Papoulis-Gerchberg cessing, IET, 2012, 6(7): algorithm [ J ]. Image Pro- 959 - 965. 被引量:1
  • 7Yang J, Wright J, Huang T, et al. Image super-resolu- tion as sparse representation of raw image patches [ C ]. Conference on Computer Vision and Pattern Recognition, IEEE, 2008 : 1 - 8. 被引量:1
  • 8Yu Z, Yanning Z, Alan L, et al. Single image super- resolution using deformable patches [ C ]. Computer Vi- sion and Pattern Recognition, 2014 : 2917 - 2924. 被引量:1
  • 9Zhang K, Tao D, Gao X, et al. Learning multiple linear mappings for efficient single image super-resolution[ J ]. Image Processing IEEE Transactions, 2015, 24 ( 3 ) : 846 - 861. 被引量:1
  • 10Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features[ J]. Computer Vision & Image Understanding, 2008, 110(3) :346 -359. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部