摘要
提出一种基于RBF神经网络的农机企业顾客满意度测评模型,它是一种典型的局部逼近神经网络,可快速完成对样本的学习与拟合,对于数据较多的情况非常适用。网络最终测评结果较BP神经网络更有效、更准确。实例证明该神经网络测评模型收敛速度快、预测精度高,为农机企业顾客满意度测评提供了实用的方法。
This paper proposes a model of measuring the agro-mechanic industry customer satisfaction degree based on radial basic function neural network.It is a typical local approximation neural network and has an excellent performance on learning and convergence with a large number of samples.The results show that this model is of higher convergent speed and good prediction precision compared with BP neural network,so it offers a useful approach for measuring customer satisfaction degree.
出处
《中国农机化》
北大核心
2011年第3期32-34,共3页
Chinese Agricul Tural Mechanization
基金
河南省教育厅自然科学研究计划项目(2008B110005)
天津市高等学校科技发展基金计划项目(20061016)
关键词
径向基函数
神经网络
顾客满意度
RBF(Radial Basic Function)
neural network
customer satisfaction degree