期刊文献+

一种改进的最小二乘支持向量机软测量建模方法 被引量:2

An Improved LS-SVM Soft Sensing Modeling Method
下载PDF
导出
摘要 针对最小二乘支持向量机(LS-SVM)缺少支持向量所具有的稀疏性和模型参数值难以选择的问题,提出利用马氏距离进行样本相似程度分析,去除集中部分样本,以恢复最小二乘支持向量机的稀疏性的方法。同时,采用k-折交叉验证误差作为学习目标的粒子群优化算法来选取模型参数,并利用改进算法建立了精馏产品浓度的软测量模型。通过仿真验证了改进算法的有效性。结果表明模型精度较高,泛化能力强,满足工业测量要求。 Aiming at the demerits of the least square support vector machine,such as losing the sparseness of support vector,and difficulty in selecting parameters of model,it is proposed that by using Mahalanobis distance to analyze the similarities among samples,for recover the sparseness of the least square vector machine.In addition,by adopting particle swarm optimization algorithm that with k-fold cross-validation error as learning object to select parameters of the model,and the improved algorithm is used to establish the soft sensing model for concentration of the product of distillation.The simulation verifies the effectiveness of the improved algorithm,and the result of research shows the model is accurate,and good for generalization to meet industrial measuring requirements.
出处 《自动化仪表》 CAS 北大核心 2011年第5期39-41,45,共4页 Process Automation Instrumentation
关键词 最小二乘支持向量机 粒子群优化算法 软测量 建模 Least square support vector machine(LS-SVM) Particle swarm optimization algorithm Soft sensing Modeling
  • 相关文献

参考文献8

二级参考文献28

  • 1Mejdell T, Skogestad S. Output estimation using multiple secondary measurements:high-purity distillation[J].Process Systems Engineering, 1993,9(10):1641-1653. 被引量:1
  • 2Yang S H, Wang X Z, Mcgreavy C, et al. Soft sensor based predictive control of industrial fluid catalytic cracking processes[J].Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, 1998,76(5):499-508. 被引量:1
  • 3Cortes C, Vapnik V. Support-vector networks[J].Machine Learning, 1995,20(1):273-297. 被引量:1
  • 4Vapnik V N. The nature of statistical learning theory[M].First Edition. New York:Springer-Verlag, 1995.79-87. 被引量:1
  • 5Yan W W, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and bayesian model selection[J].Computers & Chemical Engineering, 2004,28(10):1489-1498. 被引量:1
  • 6Suykens J A K. Nonlinear modeling and support vector machine[A].Proceedings of the IEEE Instrumentation and Measurement Technology Conference[C].Budapest, 2001.287-294. 被引量:1
  • 7Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing, 2002,48(1):85-105. 被引量:1
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 9李向阳,朱学峰,刘焕彬.硫酸盐法蒸煮过程Kappa值预测模型的研究与应用[J].广东造纸,2000(5):23-27. 被引量:18
  • 10李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108

共引文献32

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部