期刊文献+

发酵过程中比生长率的在线估计 被引量:1

On-Line Estimation of Specific Growth Rate in Fermentation Process
下载PDF
导出
摘要 提出了一种基于在线可测的二氧化碳释放率的需氧发酵过程中比生长率的在线估计方法,并且采用优化的方法进行模型中重要参数的选择.由于二氧化碳释放率容易检测,所以这种估计方法非常容易实现.在诺西肽发酵过程的应用中,利用所提出的方法得到比生长率,进而计算生物量,得出的估计值与实验值吻合得很好,表明了该估计方法的可靠性与实用性. The specific growth rate is one of the key parameters in fermentation process, but to get its value on-line is difficult because of lack of reliable sensors. An on-line estimation of the specific growth rate in aerobic fermentation process is thus proposed by measuring CER (carbon dioxide excretion rate) and then selecting the important parameters in the model through optimization. It is very easy to implement since the carbon dioxide excretion rate can be obtained easily. This method has been applied to Nosiheptide fermentation process in which the specific growth rate is given by an estimator computing the biomass. The results show that the estimated values conform well with the measured values, i.e. , the proposed method is reliable and practical.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1079-1082,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60374003) 教育部暨辽宁省流程工业综合自动化重点实验室开放课题(PAI200509).
关键词 比生长率 发酵 在线估计 二氧化碳释放率(CER) 生物量 specific growth rate fermentation on-line estimation carbon dioxide excretion rate(CER) biomass
  • 相关文献

参考文献9

  • 1陈坚,堵国成.发酵工程实验技术[M].北京:化学工业出版社,2004.290-292. 被引量:7
  • 2常玉清,王福利,王小刚,吕哲.基于支持向量机的生物发酵过程软测量建模[J].东北大学学报(自然科学版),2005,26(11):1025-1028. 被引量:11
  • 3Busawon L,Lubenuva V.A simple observer for a class of nonlinear systems[J].Applied Mathematics Letters,1998,11(2):27-31. 被引量:1
  • 4Farza M,Hammouri H.State observation of a nonlinear system:application to (bio) chemical processes[J].AIChE Journal,1999,45(1):93-106. 被引量:1
  • 5Loeblein C,Perkins J D.Structural design for on-line process optimization:I.dynamic economics of MPC[J].AIChE Journal,1999,45(5):1018-1025. 被引量:1
  • 6Zhang X C,Visala A.Functional state modeling approach for bioprocess:local models for aerobic yeast growth processes[J].Journal of Process Control,1994,4(2):127-133. 被引量:1
  • 7万睿,刘晓会,李继杨,周珮.那西肽产生菌S.actuosus选育及发酵条件的优化[J].复旦学报(医学版),2004,31(6):579-581. 被引量:6
  • 8Zabriskie D V,Humphrey A E.Real-time estimation of aerobic batch fermentation biomass concentration by component balancing[J].AIChE Journal,1978,24(1):138-140. 被引量:1
  • 9薛定宇 陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2003.. 被引量:38

二级参考文献14

  • 1周佩,李继扬,章玲,杨彩虹.诺西肽突变生物合成的研究(Ⅰ)[J].中国抗生素杂志,1995,20(3):159-162. 被引量:8
  • 2河合宏.ノッヘプタィド[J].Feeding,1988,28(4):57. 被引量:1
  • 3Mejdell T, Skogestad S. Output estimation using multiple secondary measurements:high-purity distillation[J].Process Systems Engineering, 1993,9(10):1641-1653. 被引量:1
  • 4Yang S H, Wang X Z, Mcgreavy C, et al. Soft sensor based predictive control of industrial fluid catalytic cracking processes[J].Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, 1998,76(5):499-508. 被引量:1
  • 5Cortes C, Vapnik V. Support-vector networks[J].Machine Learning, 1995,20(1):273-297. 被引量:1
  • 6Vapnik V N. The nature of statistical learning theory[M].First Edition. New York:Springer-Verlag, 1995.79-87. 被引量:1
  • 7Yan W W, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and bayesian model selection[J].Computers & Chemical Engineering, 2004,28(10):1489-1498. 被引量:1
  • 8Suykens J A K. Nonlinear modeling and support vector machine[A].Proceedings of the IEEE Instrumentation and Measurement Technology Conference[C].Budapest, 2001.287-294. 被引量:1
  • 9Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing, 2002,48(1):85-105. 被引量:1
  • 10李霞,吴佩玲,林文斌,李继扬,陈虎,周癿.分光光度法在诺西肽工业生产中的应用[J].中国医药工业杂志,1999,30(12):548-550. 被引量:12

共引文献57

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部