期刊文献+

基于纹理特征的图像自动配准方法研究 被引量:3

Research of image automatic registration method based on textural features
下载PDF
导出
摘要 精确的图像配准是超分辨率重建取得成功的前提。为此,针对大多数图像配准算法存在精度低、抗噪声能力差等缺点,提出一种基于纹理特征的图像自动配准方法。首先用Canny边缘检测算子提取裂缝纹理图像,然后用Photoshop图层工具,通过对待配准帧关于参考帧作变换,得到空间几何变换参数,最后用Matlab编程实现待配准帧的缩放、旋转和平移。对配准后的酸蚀岩板裂缝图像,进行超分辨率重建,结果证明,该方法具有抗噪声能力强、配准精度高、易于编程实现等优点,取得了较好的效果。 In order to achieve successful super-resolution image reconstruction,it is critical for image registration to be precise.In view of mostly image registration algorithms are low quality or resisted noise badly and so on.The paper gives an automatic registration method based on textural features.Firstly,extracted the texture image with Canny recognition arithmetic oprators.Secondly,got the space transformation parameters via the transformation of the target frame referring to the reference frame with Photoshop layer tool.Eventually,achieved the zoom,rotation and translation of the target image by programming with Matlab.The reconstruction results with the registrated images of acid rock plate crevice proved that the method is good anti-noise properties,accurately registration,easily programing.
出处 《微型机与应用》 2011年第9期36-38,共3页 Microcomputer & Its Applications
关键词 图像配准 酸蚀岩板裂缝图像 图像纹理 插值重建 image registration acid rock plate crevice image image texture interpolation reconstruction
  • 相关文献

参考文献8

二级参考文献18

共引文献111

同被引文献31

  • 1陈天,赵建森.基于多方向边界匹配的视频误码掩盖算法[J].电子科技,2006,19(10):41-44. 被引量:3
  • 2刘贵喜,王蕾.基于区域选择和特征点匹配的图像配准算法[J].光电子.激光,2007,18(8):999-1002. 被引量:19
  • 3ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21:977-1000. 被引量:1
  • 4COLLIGNON A, MAES F, DELAERE D, et al. Automated muhimodality medical image registration using information theory [C]. Proceedings of Information Processing in Medical Imaging, 1995:263-274. 被引量:1
  • 5BAY H, TUVTELLARS T, GOOL L VAN. SURF: speeded up robust features [C]. Proceedings of the European Conference on Computer Vision, 2006 -404-417. 被引量:1
  • 6RANGARAJAN A, Chui Haili, DUNCAN J S, et al. Rigid point feature registration using mutual information[J]. Medical Image Analysis, 1999,3 (4) : 425-440. 被引量:1
  • 7PAL D, POCZOS B, SZEPESVARI C. Estimation of R6nyi entropy and mutual information based on generalized nearest- neighbor graphs[C]. NIPS, 2010. 被引量:1
  • 8VIOLA P, JONES M J. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of Computer Vision and Pattern Recognition, 2001:511-518. 被引量:1
  • 9BROWN M, LOWED. Invariant features from interest point groups[C]. BMVC, 2002: 1-10. 被引量:1
  • 10LUAN H X, QI F H, XUE Z, et al. Multimodality image registration by maximization of quantitative -qualitative measure of mutual information[J]. Pattern Recognition, 2008; 41 : 285-298. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部