期刊文献+

LiGd_xMn_(2-x)O_4(0≤x≤0.1)材料的结构与电化学性能 被引量:3

Structure and electrochemical properties of LiGd_xMn_(2-x)O_4(0≤x≤0.1) materials
下载PDF
导出
摘要 采用高温固相法合成掺杂Gd3+的锰酸锂LiGdxMn2-xO4(x=0、0.01、0.05、0.1)锂离子电池正极材料并研究了其结构与电化学特性。XRD分析表明,随着Gd3+含量的增加,材料的晶格参数、晶胞体积、Mn—Mn、Mn—O键距、Mn3+/Mn4+比值均下降,材料结构稳定性得到改善。当x≥0.05时第二相Gd2O3析出。循环伏安(CV)和电化学阻抗(EIS)分析表明掺杂Gd3+能降低LiMn2O4在电化学过程中的阴/阳极极化和电荷转移电阻,提高材料的电化学可逆性和动力学性能。恒流充放电实验发现Gd3+的掺入明显改善了材料的循环性能、高温性能以及倍率性能。 Gd3+-doping lithium manganese oxide LiGdxMn2-xO4(x=0,0.01,0.05,0.1) materials were synthesized by solid-state sintering method and their structure and electrochemical performance were investigated in this paper.The part substitution of rare-earth element Gd3+ for Mn in LiMn2O4 was found to decrease the lattice parameter,unit cell volume,Mn—Mn and Mn—O bond spacings,Mn3+/Mn4+ ratio,which result in the improvement of structure stability of LiMn2O4.When x≥0.05,Gd2O3 second phase appears.Cyclic voltammongram(CV) and electrochemical impedance spectroscopy(EIS) analyses indicated that Gd3+-doping could reduce the cathode anode polarization and the charge transfer resistance during the electrochemical process,and thus improve the electrochemical reversibility and kinetics of LiMn2O4 electrode material.Electrochemical measurements showed that the cyclability,high-temperature and high-rate performances of LiMn2O4 electrode materials were significantly improved with increasing Gd3+ addition.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第5期955-958,共4页 Journal of Functional Materials
关键词 锂离子电池 锰酸锂 掺杂 电化学性能 lithium-ion battery LiMn2O4 Gd3+-doping electrochemical performance
  • 相关文献

参考文献3

二级参考文献29

  • 1Liu Z, Yu M, Lee T Y. JPowder Sources[J], 1998, 74(2): 228. 被引量:1
  • 2Li W, Currie J C. J Electrochem Soc[J], 1997, 144(3): 773. 被引量:1
  • 3Hosoya M, Ikuta H, Wakihara M. Solid State Ionics[J], 1998, 111(1-2): 153. 被引量:1
  • 4Xia Y Y, Masaki Y. J Powder Source[J], 1997, 66(1): 129. 被引量:1
  • 5Pistonia A D, Blyr A, Courhal P et al. J Electrochem Soc[J], 1999, 146(2): 428. 被引量:1
  • 6Saadoune I, Delmas C. J Solid State Chem[J], 1998, 136:8. 被引量:1
  • 7Wu X, Zong X, Yang Q et al. J Fluorine Chem[J], 2001, 107(1): 39. 被引量:1
  • 8Tang H, Xi M Y, Huang X M et al. J Mater Sci Lett[J], 2002, 21:999. 被引量:1
  • 9ChenMin(陈敏) SiLican(斯利灿) ZhengXiaoming(郑小明).浙江大学学报:理学版,2007,34(4):223-223. 被引量:1
  • 10Nagaura T, Tozawa K. Lithium ion rechargeable battery [J].Prog.Batteries Sol. Cells, 1990, 9: 209. 被引量:1

共引文献36

同被引文献29

  • 1王国光,王建明,毛文曲,刘立清,张鉴清,曹楚南.LiNi_yCo_(0.1-y)Mn_(1.9)O_4 正极材料的沉淀法制备及其结构与电化学性能(英文)[J].物理化学学报,2005,21(11):1285-1290. 被引量:5
  • 2冯季军,徐荣琪,唐致远,艾洪奇.复合掺杂改性的尖晶石LiMn_(1.98)Cr_(0.02)O_(4-y)Cl_y的研究[J].高等学校化学学报,2007,28(8):1532-1536. 被引量:8
  • 3Scrosati B. Battery technology-challenge of portable power[J]. Nature, 1995,373(6515): 557-558. 被引量:1
  • 4TarasconJ M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414 (6861): 359-367. 被引量:1
  • 5Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193. 被引量:1
  • 6Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced lithium-ion batteries[J].Journal of Power Sources, 2007, 174(2): 449-456. 被引量:1
  • 7Xu B, Qian D, Wang Z, et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Materials Science and Engineering: R: Reports, 2012, 73 (5): 51-65. 被引量:1
  • 8Wu v, Wen Z, Feng H, et al. Hollow porous LiMn,O, microcubes as rechargeable lithium battery cathode with high electrochemical performance[J]. Small, 2012, 8 (6): 858-862. 被引量:1
  • 9TarasconJ M, Wang E, Shokoohi F K, et al. The spinel phase of LiMn,O, as a cathode in secondary lithium cells[J].Journal of the Electrochemical Society, 1991, 138 (0): 2859-2864. 被引量:1
  • 10Thackeray M M. Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry, 1997, 250): 1- 7l. 被引量:1

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部