期刊文献+

表面掺杂Al的球形尖晶石LiMn_2O_4的高温循环性能 被引量:7

High Temperature Cycleability of Spherical Spinel LiMn_2O_4 with Al-Doped Surface
下载PDF
导出
摘要 采用控制结晶工艺合成了球形Mn3O4,通过在球形Mn3O4的表面包覆Al(OH)3,然后与LiOH一起混合焙烧制备了表面掺杂Al的尖晶石LiMn2O4。采用SEM,XRD,EDS以及电池系统测试等方法,研究了所制备材料的结构和性能。SEM分析表明:表面掺杂后,Al(OH)3均匀地包覆在颗粒表面。XRD和EDS分析表明:焙烧后,Al元素占据了Mn的位置,且颗粒表面的Al含量高于其总体的平均含量,说明Al只是在表面富集,即表面掺杂。电池测试表明:表面掺杂后,尖晶石LiMn2O4的初始充放电容量有所下降,但在高温55℃下的循环性能有显著的提高,表面掺杂6%Al的尖晶石LiMn2O450次循环的容量保持率从68.3%提高到79.0%。说明以Al3+作为掺杂离子通过表面掺杂来改善LiMn2O4的高温循环性能是有效的。 The spherical Mn3O4 was prepared by a controlled crystallization process, and the spherical spinel LiMn2O4 was produced by the following procedure: the surface of the spherical Mn3O4 was coated with Al(OH)3, then mixed with LiOH and sintered. The structure and performances of the above material were studied by SEM, XRD, EDS etc. SEM analysis showed that the Al(OH)3 was uniformly coated on the surface of spherical Mn3O4. XRD and EDS analysis's indicated that the Al^3+ ions occupied the sites of manganese and Al content of its surface was higher than the average value, indicating that the aluminum was only enriched on the surface of the particles, e.g. the surface doping. Specific capacity of spherical LiMn2O4 decreased after the doping, but its cycle ability at 55℃ was improved. Its capacity retention for the spinel LiMn2O4 doped with 6%Al at 50^th cycle at 55℃ increased from 68.3% to 79.0%. It means that the surface doping of aluminum is an effective way to improve the elevated temperature performances of spherical spinel LiMn2O4.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第12期1987-1990,共4页 Rare Metal Materials and Engineering
关键词 球形尖晶石锰酸锂 表面掺杂 高温性能 spherical spinel LiMn2O4 surface doping aluminum elevated temperature
  • 相关文献

参考文献8

  • 1李嵩,程杰锋,季世军,孙俊才.水热合成锂离子正极材料LiMn_2O_4[J].稀有金属材料与工程,2003,32(6):468-470. 被引量:16
  • 2He X M,Li J J,Cai Y et al.J Solid Sate Electrochem[J],2005,9(6):438 被引量:1
  • 3Huang H,Vincent C A,Bruce P G.J Electrochem Soc[J],1999,146(2):481 被引量:1
  • 4Blyr A,Sigala C,Amatucci G G et al.J Electrochem Soc[J],1998,145(1):194 被引量:1
  • 5He X M,Li J J,Cai Y et al.Materials Chem Phys[J],2006,95(1):105 被引量:1
  • 6PuWeihua(蒲薇华) HeXiangming(何向明) YingJierong(应皆荣)etal.稀有金属材料与工程,2005,34(2):19-19. 被引量:1
  • 7Myung S T,Komaba S,Kumagai N.J Electrochem Soc[J],2001,148(5):482 被引量:1
  • 8Hwang B J,Santhanam R,Liu D G et al.J Power Sources[J],2001,102(1~2):326 被引量:1

二级参考文献5

  • 1[3]Prabaharan S,Saparil N,Michael S et al. Solid State Ionics [J],1998,12:25 被引量:1
  • 2[4]Lee Y S et al. Solid State Ionics[J],1998,19:285 被引量:1
  • 3[5]Liu W,Farrington G C,Chaput F et al.J Electrochem Soc [J],1996,143:879 被引量:1
  • 4[6]Sun Y K, et al.Ind Eng Chem Res [J],1997,36:4 839 被引量:1
  • 5[7]Yongyao Xia et al. J Power Sources [J],1995,56: 61 被引量:1

共引文献15

同被引文献105

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部