摘要
利用Euler-Maclaurin公式研究了数值积分中矩形法则,得到了一类带端点导数的中矩形修正公式,分析了公式的代数精度,并给出了公式的截断误差.由于2个端点导数项系数互为相反数且复化公式只含有整个区间端点处的导数,所以在不增加计算量的情况下,这类修正公式大幅提高了数值积分公式的收敛阶.
A class modified formula for mid-rectangle rule with endpoint derivatives and its truncation error is presented by Euler-Maclaurin formula..And the algebra precision of the Modified Formula is studied.The coeffi-cients of derivative terms at ends of the modified formula are the opposite numbers.Compound mid-rectangular modified formula with endpoint derivatives just contains the derivatives at the ends of whole intervals.In the case of no increasing the amount of calculation,the ranks of convergence order are significantly increased.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2011年第2期140-142,147,共4页
Journal of Jiangxi Normal University(Natural Science Edition)