期刊文献+

基于VQ-MAP和SVM融合的说话人识别系统 被引量:5

Speaker recognition system based on VQ-MAP and SVM
下载PDF
导出
摘要 针对传统支持向量机(SVM)在说话人识别中运算量过大的问题,提出了VQ-MAP和SVM融合的说话人识别系统。它应用仅自适应均值向量的最大后验概率矢量量化过程(VQ-MAP),来得到自适应的说话人模型,用此模型中的参数向量作为支持向量应用于SVM来进行说话人识别。用Matlab进行仿真实验,结果表明,基于VQ-MAP和SVM融合的说话人识别系统大大降低了运算量,SVM训练时间短,且具有较高的识别率。 The traditional Support Vector Machine(SVM) in speaker recognition has high computational complexity.To solve this problem,this paper proposes a kind of speaker recognition system based on VQ-MAP and SVM which formulates Maximum A Posteriori Vector Quantization(VQ-MAP) procedure that adapts the mean vectors only.The result is the adapted speaker model and the parameter vectors of this model are used as the support vectors of SVM for speaker recognition.According to the results of simulation using Matlab,speaker recognition system based on VQ-MAP and SVM has significantly reduced computational complexity and the training time of SVM is short and it also has high recognition rate
作者 展领 景新幸
出处 《计算机工程与应用》 CSCD 北大核心 2011年第13期136-138,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60961002 广西教育厅科研项目(No.200808MS008) 桂林电子科技大学博士科研启动基金(No.UF08018Y)~~
关键词 矢量量化(VQ) 最大后验概率(MAP)自适应 支持向量机(SVM) 说话人识别 Vector Quantization (VQ) Maximum A Posteriori (MAP) adaptation Support Vector Machine (SVM) speaker recognition
  • 相关文献

参考文献9

二级参考文献16

  • 1Le Cun Y,The Statistical Mechunics Perspective Oh J II,1995年,261页 被引量:1
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. New Work: Springer Verlag, 1995. 被引量:1
  • 3Guodong Guo, Stan Z Li, Ka P Luk Chan. Support Vector Machines for Face Recognition[J]. Image and Computing,2001,19:631 - 638. 被引量:1
  • 4Stitson M O, Weston J A E, Gammerman A, et al. Theory of Support Vector Machines. Technical Report CSD - TR - 96 -17,Royal Holloway University of London, 1996. 被引量:1
  • 5Kenny P,Dumouchel P.Experiments in speaker verificationusing factor analysis likelihood ratios[].Proc Odyssey.2004 被引量:1
  • 6Campbell W M,Sturimv D E,Reynolds D A.SVM basedspeaker verification suing a GMM supervector kernel andNAP variability compensation[].Signal ProcessingLetters.2006 被引量:1
  • 7Cristianini N,Shawe-Taylor J.Support Vector Machines[]..2000 被引量:1
  • 8Solomonoff A,Campbell W M,Boardman I.Advances inchannel compensation for SVM speaker recognition[].Proc ICASSP.2005 被引量:1
  • 9XIONG Zhengyu,ZHENG Fang,SONG Zhanjiang,et al.Combining selection tree with observation reordering pruningfor efficient speaker identification using GMM-UBM[].Proc ICASSP.2005 被引量:1
  • 10Wan V,Renals S.Support Vector machine speakerverification methodology[].AcousticsSpeech and SignalProcessing.2003 被引量:1

共引文献83

同被引文献45

  • 1Keerthi S S,Lin C J. Asymptotic behaviors of support vector machines with gaussian kernel[J].Neural Computation,2003,(7):1667-1689.doi:10.1162/089976603321891855. 被引量:1
  • 2Duan K B,Keerthi S S,Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters[J].Neurocomputing,2003.41-59. 被引量:1
  • 3Wang G, Yu HY, Shen ZX, et al. Fast convergence parameter estimation method based on Expectation-Maximum algorithm. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(2): 532-537. 被引量:1
  • 4Ramezani A, Moshiri B, Khan AR, et al. Design of an adaptive maximum likelihood estimator for key parameters in macroscopic traffic flow model based on expectation maximum algorithm. IET Science, Measurement & Technology, 2011, 5(5): 189-197. 被引量:1
  • 5Wang G, Yu HY, Shen ZX. An Improved Symbol Detection Algorithm Based on Expectation-Maximum. Information Computing and Applications. Springer Berlin Heidelberg, 2013: 467-476. 被引量:1
  • 6Katsamanis A, Black MP, Georgiou PG, et al. SailAlign: Robust long speech-text alignment. Proc. of Workshop on New Tools and Methods for Very-Large Scale Phonetics Research in Phonetic Science. 2011. 28-31. 被引量:1
  • 7GEORGE K K, ARUNRAJ K, SREEKUMAR K T, et al. Towards improving the performance of text/language independent speaker recognition systems [C]// EPSCICON 2014: Proceedings of the 2014 International Conference on Power Signals Control and Computations. Piscataway: IEEE, 2014: 1-6. 被引量:1
  • 8HAUTAMAKI V, KINNUNEN T, KARKKAINEN I, et al. Maxi-mum a posteriori adaptation of the centroid model for speaker verification [J]. IEEE Signal Processing Letters, 2008, 15: 162-165. 被引量:1
  • 9SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. 被引量:1
  • 10ZHENG R, ZHANG S, XU B. Text-independent speaker identification using GMM-UBM and frame level likelihood normalization [C]// Proceedings of the 2004 International Symposium on Chinese Spoken Language Processing. Piscataway: IEEE, 2004: 289-292. 被引量:1

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部