期刊文献+

GMM-UBM和SVM说话人辨认系统及融合的分析 被引量:9

Combined GMM-UBM and SVM speaker identification system
原文传递
导出
摘要 在说话人辨认任务中,Gauss混合模型-通用背景模型(Gaussian mixture model-universal backgroundmodel,GMM-UBM)采用帧向量进行建模和识别,突出了说话人个性特征,但受信道影响较大;支持向量机(support vector machine,SVM)利用帧向量在空间中分布的Gauss混合的均值进行建模和识别,对信道的鲁棒性较好,但对说话人的个性体现不够。该文分析了这2种说话人识别系统的优缺点,并采用融合方法来提高系统的性能。在美国国家标准与技术研究所(NIST)评测数据集的实验中,融合系统的等错误率从GMM-UBM系统的9.30%和SVM系统的8.26%降低到7.34%,分别相对降低了21.08%和11.14%。 The Gaussian mixture model-universal background model(GMM-UBM) speaker identification system uses the features of each frame to model and identify the characteristics of the target speaker but has poor robustness to channel effects.The support vector machine(SVM) speaker identification system uses the mean vector of each Gaussian mixture of the frame vectors to model and identify the speaker with much more robust channel effects but while ignoring the characteristics of the target speaker.Tests of a combine...
作者 鲍焕军 郑方
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第S1期693-698,共6页 Journal of Tsinghua University(Science and Technology)
关键词 说话人辨认 Gauss混合模型-通用背景模型(GMM-UBM) 支持向量机(SVM) 信道鲁棒 speaker recognition Gaussian mixture model-universal background model(GMM-UBM) support vector machine(SVM) channel robustness
  • 相关文献

参考文献10

  • 1Kenny P,Dumouchel P.Experiments in speaker verificationusing factor analysis likelihood ratios[].Proc Odyssey.2004 被引量:1
  • 2Campbell W M,Sturimv D E,Reynolds D A.SVM basedspeaker verification suing a GMM supervector kernel andNAP variability compensation[].Signal ProcessingLetters.2006 被引量:1
  • 3Cristianini N,Shawe-Taylor J.Support Vector Machines[]..2000 被引量:1
  • 4Solomonoff A,Campbell W M,Boardman I.Advances inchannel compensation for SVM speaker recognition[].Proc ICASSP.2005 被引量:1
  • 5XIONG Zhengyu,ZHENG Fang,SONG Zhanjiang,et al.Combining selection tree with observation reordering pruningfor efficient speaker identification using GMM-UBM[].Proc ICASSP.2005 被引量:1
  • 6Wan V,Renals S.Support Vector machine speakerverification methodology[].AcousticsSpeech and SignalProcessing.2003 被引量:1
  • 7DENG Jing,ZHENG Fang,WU Wenhu.Session variabilitysubspace projection based model compensation for speakerverification[].AcousticsSpeech and Signal Processing.2007 被引量:1
  • 8Furui S.Cepstral analysis technique for automatic speakerverification[].IEEE Trans Acoust Speech SignalProcessing.1981 被引量:1
  • 9Viikki O,Laurila K.Noise robust HMM-based speechrecognition using segmental cepstral feature vectornormalization[].ESCA NATO Workshop on RobustSpeech Recognition for Unknown Communication Channels.1997 被引量:1
  • 10D. A. Reynolds,T. Quatieri,and R. Dunn.Speaker verification using adapted Gaussian mixture models[].Digital Signal Processing.2000 被引量:1

同被引文献55

  • 1程俊,张璞,戴善荣,易克初.小波变换用于信号突变的检测[J].通信学报,1995,16(3):96-104. 被引量:36
  • 2董志峰,汪增福.基于动态MFCC的说话人识别算法[J].模式识别与人工智能,2005,18(5):596-601. 被引量:7
  • 3赵虹,韦丽华.基于支持向量机的说话人识别研究[J].现代电子技术,2007,30(6):125-127. 被引量:3
  • 4邓菁.电话信道下多说话人识别研究[D].北京:清华大学,2007. 被引量:4
  • 5Hautamaki V,Kinnunen T,Karkkainen I.Maximum a posteriori adaptation of the centroid model for speaker verification[J].IEEE Signal Process Lett,2008,15:162-165. 被引量:1
  • 6Campbell W M,Sturim D E,Reynulds D A.Support vector machines using GMM superveetors for speaker verification[J].IEEE Signal Processing Letters,2006,13 (5):308-311. 被引量:1
  • 7龙艳花,郭武,戴礼荣.一种应用于SVM说话者确认系统的新型序列核[C] //第九届全国人机语音通讯学术会议论文集,2007. 被引量:1
  • 8Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models[J].Digital Signal Processing:A Review Journal,2000,10(1):19-41. 被引量:1
  • 9Nello C,Jhon S T.Support vector machines[M].Cambridge U K: Cambridge University Press,2000. 被引量:1
  • 10Campbell W M, Campbell J P, Gleason T P, et al.Speaker verification using support vector machines and high-level features[J]. IEEE Trans, Audio, Speech, Lang, 2007, 15 (7) :2085-2094. 被引量:1

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部