期刊文献+

基于文本蕴涵的受限领域自动问答方法研究 被引量:3

An Entailment-based Question Answering Method in a Restricted Domain
下载PDF
导出
摘要 本文提出了一种用于受限领域自动问答的新方法。与传统的自动问答方法不同,该方法不对用户问题进行语言分析以生成结构化的查询,而是利用文本蕴涵技术从自动生成的假设问题库中寻找用户问题所蕴涵的假设问题,然后利用该假设问题所附的答案指南获取用户问题的答案。该方法的优点之一是不需要复杂的语言处理就可以回答复杂的问题,而且正确率较高;优点之二是可以利用本体方便地生成不同语种的假设问题,实现跨语言问答。本文基于英文提问对该方法进行了测评,测评结果表明几乎所有的用户问题都可以基于生成的假设问题来直接或间接地回答,回答的正确率达到65.6%。 This paper presents a new knowledge-based Question Answering(QA)method for a restricted domain with the use of textual entailment.In this method,a set of question patterns,called hypothesis questions,was automatically produced from a domain ontology,along with their corresponding query templates for answer retrieval.Then the QA task was reduced to the problem of looking for the hypothesis question that was entailed by a user question and taking its corresponding query template to produce a complete query for retrieving the answers from underlying knowledge bases.This method is able to answer complex questions without involving complex language processing and can be easily ported to other languages.An evaluation was carried out to assess the accuracy of the QA method,and the results revealed that almost all the user questions can be answered directly or indirectly based on the produced hypothesis questions,and the QA accuracy is 65.6%with the use of a semantic entailment engine enhanced by the domain ontology.
作者 欧石燕
出处 《情报学报》 CSSCI 北大核心 2011年第5期540-547,共8页 Journal of the China Society for Scientific and Technical Information
基金 欧盟研究项目QALL-ME(FP6 IST-033860 at http://qallme.fbk.eu)的资助
关键词 自动问答 文本蕴涵 本体 question answering textual entailment ontology
  • 相关文献

参考文献12

  • 1Molla D, Vicedo J. Question answering in restricted domains: An overview [ J]. Computational Linguistics, 2007, 33(1) :41-61. 被引量:1
  • 2Kouylekov M, Negri M, Magnini B, et al. Towards entailment-based question answering: ITC-irst at CLEF 2006 [ C ]//Proceedings of the 7^th Workshop of the Cross-Language Evaluation Forum. Heidelberg, Berlin: Springer ,2006 : 526-536. 被引量:1
  • 3Harabagiu S, Hickl A. Methods for using textual entailment in open-domain question answering [ C ]// Proceedings of the 21^st International Conference on Computational Linguistics and the 44^th Annual Meeting of the ACL. Morristown, NJ: ACL, 2006:905-912. 被引量:1
  • 4Warren D, Pereira F. An efficient easily portable system for interpreting natural language queries [ J ]. Computational Linguistics, 1982,8 ( 3-4 ) : 110-122.2. 被引量:1
  • 5Popescu A, Etzioni O, Kautz H. Towards a theory of natural language interfaces to databases [ C ]//Proceedings of the 8th International Conference on Intelligent User Interfaces. New York, NY : ACM, 2003 : 149-157. 被引量:1
  • 6Katz B, Felshin S, Yuret D, et al. Omnibase: Uniform access to heterogeneous data for question answering [ C]//Proceeding of the 7^th International Workshop on Applications of Natural Language to Information Systems. Heidelberg, Berlin : Springer, 2002:230-234. 被引量:1
  • 7Atzeni P, Basili R, Hansen D H, et al. Ontology-based question answering in a federation of university sites : the MOSES case study [ C ]//Proceedings of the 9th International Conference on Applications of Natural Language to Information Systems. Heidelberg, Berlin: Springer, 2004:413-420. 被引量:1
  • 8Lopez V, Pasin M, E Motta E. AquaLog: An ontologyportable question answering system for the semantic web [ C]//Proceedings of the 2^nd European Semantic Web Conference. Heidelberg, Berlin : Springer, 2005 : 546-562. 被引量:1
  • 9Negri M, Magnini B, Kouylekov M. Detecting expected answer relations through textual entailment [ C ]// Proceedings of the 9^th International Conference on Intelligent Text Processing and Computational Linguistics. Heidelberg, Berlin : Springer, 2008 : 532-543. 被引量:1
  • 10Ou S, Pekar V, Orasan C, et al. Development and alignment of a domain-specific ontology for question answering[ C]//Proceedings of the 6th Edition of the Language Resources and Evaluation Conference. Paris, France : European Language Resources Association, 2008. 被引量:1

同被引文献47

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部