期刊文献+

一种自适应的Gabor图像特征抽取和权重选择的人脸识别方法 被引量:12

An Adaptive Feature and Weight Selection Method Based on Gabor Image for Face Recognition
下载PDF
导出
摘要 为了克服光照、表情变化等因素对人脸识别的影响,本文提出了一种自适应的Gabor图像特征抽取和权重选择的人脸识别方法.该方法首先把每幅人脸图像经过Gabor小波变换后得到的40个不同尺度和方向下的图像都看作是独立的样本,再把不同人脸中的同一尺度和方向的变换结果进行特征重组,得到40个独立地新特征矩阵.为了增强对光照、表情变化的鲁棒性,每一新特征矩阵的识别贡献被本文所提出的自适应权重方法计算得到.其次,对每一新特征矩阵采用离散余弦变化进行降维,并采用了鉴别力量分析方法来选取最有鉴别力的离散余弦变换系数作为特征向量.最后,抽取线性鉴别分析特征进行识别.大量的实验证明了本文所提方法的有效性. To overcome the negative effect of factors such as illumination and expression on face recognition,an adaptive feature and weight selection method was proposed.The method was based on Gabor image for face recognition.Firstly,40 independent feature matrices which were reconstructed with the same scale and the same direction transform results of the different face images were obtained by regarding every Gabor wavelet transformed output image as an independent sample.In order to enhance the robustness to facial expression and illumination variations,the contribution of each new feature matrix could be adaptively computed by the proposed adaptive weight method.Secondly,after applying discrete cosine transform to each feature matrix,the coefficients which had more power to discriminate different classes than others were selected by discrimination power analysis to construct feature vectors.And,linear discriminant analysis features were extracted to fulfill recognition task.Experiments on the face databases demonstrate the effectiveness of the proposed method.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第4期636-641,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.60973098 No.60632050 No.60873151)资助
关键词 GABOR变换 自适应特征和权重选择 离散余弦变换 鉴别力量分析 人脸识别 Gabor transform Adaptive weight and feature selection Discrete Cosine Transform(DCT) Discrimination Power Analysis(DPA) Face recognition
  • 相关文献

参考文献17

  • 1张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:257
  • 2KWAK N.Feature extraction for classification problems and its application to face recognition[J].Pattern Recognition,2008,41(5):1701-1717. 被引量:1
  • 3LI Zhi-feng,TANG Xiao-ou.Nonparametric discriminant analysis for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(4):755-761. 被引量:1
  • 4TENLLADO C,GOMEZ J I,SETOAIN J,et al.Improving face recognition by combination of natural and Gabor faces[J].Pattern Recognition Letters,2010,31(11):1453-1460. 被引量:1
  • 5ZHAO San-qiang,GAO Yong-sheng,ZHANG Bao-chang.Gabor feature constrained statistical model for efficient landmark localization and face recognition[J].Pattern Recognition Letters,2009,30(10):922-930. 被引量:1
  • 6SERRANO A,de DIEGO I M,CONDE C,et al.Recent advances in face biometrics with Gabor wavelets:A review[J].Pattern Recognition Letters,2010,31(5):372-381. 被引量:1
  • 7KANAN H R,FAEZ K.Recognizing faces using adaptively weighted sub-gabor array from a single sample image per enrolled subject[J].Image and Vision Computing,2010,28(3):438-448. 被引量:1
  • 8SHEN Lin-Lin JI Zhen.Gabor Wavelet Selection and SVM Classification for Object Recognition[J].自动化学报,2009,35(4):350-355. 被引量:14
  • 9LIU C,WECHSLER H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,11(4):467-476. 被引量:1
  • 10LIU D,LAM K,SHEN L.Optimal sampling of gabor features for face recognition[J].Pattern Recognition Letters,2004,25(2):267-276. 被引量:1

二级参考文献37

  • 1Shen L L, Bai L. A review on Gabor wavelets for face recognition. Pattern Analysis and Applications, 2006, 9(2- 3): 273-292 被引量:1
  • 2Wang W, Li J W, Huang F F, Feng H L. Design and implementation of Log-Gabor filter in fingerprint image enhancement. Pattern Recognition Letters, 2008, 29(3): 301-308 被引量:1
  • 3Ding K, Liu Z B, Jin L W, Zhu X H. A comparative study of Gabor feature and gradient feature for handwritten Chinese character recognition. In: Proceedings of International Conference on Wavelet Analysis and Pattern Recognition. Washington D. C., USA: IEEE, 2007. 1182-1186 被引量:1
  • 4Wiskott L, Fellous J M, Kruger N, vonder M C. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775 - 779 被引量:1
  • 5Phillips P J, Moon H, Rizvi S A, Rauss P J. The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104 被引量:1
  • 6Chung K C, Kee S C, Kim S R. Face recognition using principal component analysis of Gabor filter responses. In: Proceedings of International Workshop on Recognitions Analysis, and Tracking of Faces and Gestures in Real-Time Systems. Corfu, Greece: IEEE, 1999. 53-57 被引量:1
  • 7Liu C J, Wechsler H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 2002, 11(4): 467-476 被引量:1
  • 8Shen L L, Bai L, Fairhurst M. Gabor wavelets and general discriminant analysis for face identification and verification. Image and Vision Computing, 2007, 25(5): 553-563 被引量:1
  • 9Zhang W C, Shan S Q,-Gao W, Chang Y Z, Cao B, Yang P. Information fusion in face identification. In: Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C., USA: IEEE, 2004. 950-953 被引量:1
  • 10Qin J, He z S. A SVM face recognition method based on Cabot-featured key points. In: Proceedings of the 4th International Conference on Machine Learning and Cybernetics. WashingtonD. C., USA-IEEE, 2005: 5144-5149 被引量:1

共引文献305

同被引文献75

引证文献12

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部