期刊文献+

基于DCT特征与SVM分类的人脸检测 被引量:3

Face Detection Based on DCT Eigenvalue and SVM Classification
下载PDF
导出
摘要 一般的人脸检测在运行时间及检测率上都不能得到很好的保证.本文提出了基于离散余弦变换的支持向量机的人脸检测方法,利用离散余弦变化后的系数作为支持向量机的输入特征,实验表明该方法具有更好的检测效果.实验还表明,在采用离散余弦变换系数作为检测特征值时,检测准确率并不是随着所选取特征值个数的增加而提高. Usually the runtime and detection rate of face detection were unsatisfactory. In this paper,we presented a method based on discrete cosine transform and Support Vector Machine. It used the coefficient of discrete cosine transformation as the eigenvalue of support vector machine. The experiment shows that it had a better result of detecting faces,and when discrete cosine transform coeffi- cients were userd as eigenvalue,the detection rate was not increased with increasing the number of selected eigenvalue.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期788-791,共4页 Journal of Xiamen University:Natural Science
基金 厦门大学985二期工程项目资助
关键词 人脸检测 离散余弦 支持向量机 face detection discrete cosine Support Vector Machine
  • 相关文献

参考文献8

二级参考文献11

  • 1边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283. 被引量:143
  • 2YANG Ming-Hsuan,KRIEGMAN David J ,AHUJA Narendra. Detecting faces in images: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34 - 58. 被引量:1
  • 3SHANNON C E, WEAVER W. A mathematical theory of communication[J]. Bell System Technical Journal, 1948,27:379-423,623-656. 被引量:1
  • 4OSUNA E, FREUND R, GIROSI F. Training support vector machines: An application to face detection[A]. Proc Computer Vision and Pattern Recognition[C]. Puerto Rico,1997:130-136. 被引量:1
  • 5VLADIMIR N Vapnik. The nature of statistical learning theory(seeond edition)[M]. New York: Springer-Verlag, 2000. 被引量:1
  • 6PAPAGEORGIOU C,OREN M,POGGIO I. A trainable system for object recognition[J]. Int'l J Computer Vision, 2000,38(1):15-33. 被引量:1
  • 7SINHA P, OSUNA E, OREN M,et al. Pedestrian detection using wavelet templates[A]. In Proc IEEE Conf Compuuer Vision and Pattern Recognition[C]. Puerto Rico,1997:193-199. 被引量:1
  • 8DUMAIS S, PLATT J, HECKERMAN D, et al. Inductive learning algorithms and representations for text categorization[A]. In Proceedings of the 7th International Conference on Information and Knowledge Management[C].Bethesda:MD,1998:148-155. 被引量:1
  • 9JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[A]. In Proceedings of the 10th European Conference on Machine Learning[C]. Berlin: Springer,1998:137-142. 被引量:1
  • 10SUNG K K,POGGIO T. Example-based learning for view-based human face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(1):39-51. 被引量:1

共引文献2422

同被引文献15

  • 1姜文瀚,周晓飞,杨静宇.基于小波和最近邻凸包分类器的人脸识别[J].微计算机信息,2008,24(4):212-214. 被引量:5
  • 2何国辉,甘俊英.二维主元分析在人脸识别中的应用研究[J].计算机工程与设计,2006,27(24):4667-4669. 被引量:22
  • 3林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 4Mallat S.A Wavelet Tour of Signal Processing[M].San Diego:Academic Press,1998. 被引量:1
  • 5Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:A flew approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Maehine Intelligence,2004,26(1):131-137. 被引量:1
  • 6Ali M,AL-KHOURI.Identity and Mobility in a Digital World[J].Technology and Investment,2013,4(1):7-12. 被引量:1
  • 7Zhang J,Li J,Jiang S,et al.The Research of Face Detection Based on Double Skin Model and Adaboost Algorithm[C].Proceedings of 2011 International Conference on Intelligent Computing and Integrated Systems(ICISS2011),2011. 被引量:1
  • 8Ali M. Al-Khouri.??Identity and Mobility in a Digital World(J)Technology and Investment . 2013 (01) 被引量:1
  • 9苑玮琦,柯丽,白云,编著.生物特征识别技术(M)科学出版社, 2008 被引量:1
  • 10Zhang J,Li J,Jiang S,et al.The Research of Face Detection Based on Double Skin Model and Adaboost Algorithm. Proceedings of 2011 International Conference on Intelligent Computing and Integrated Systems (ICISS 2011) . 2011 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部