期刊文献+

基于边缘信息C_V模型的医学图像分割方法 被引量:7

Boundary Information Based C_V Model Method for Medical Image Segmentation
下载PDF
导出
摘要 图像分割是医学处理中的重要研究内容之一,提出一种基于边缘信息的改进的C_V模型的医学图像分割方法.在模型中增加了表征边界特征的项,利用图像的边界信息与区域信息为分割服务,克服了传统C_V模型不能利用图像的梯度信息的不足.并对C_V模型的区域信息项进行了改造,改变了传统C_V模型中均值取值的定义,提高了对灰度层次丰富的图像分割能力.增加了距离函数惩罚项,将距离函数重新初始化的过程并入整个水平集框架模型中,极大地提高了曲线演化与分割速度.实验表明该模型是有效的医学图像分割方法. The image segmentation is one of the key problems in medical image processing.An improved C_V(Chan Vese) model for medical image segmentation based on boundary information is proposed.Firstly,a term of boundary information is added into the model,incorporating region and boundary information for segmentation.It solves the problem that the traditional C_V method can not use the gradient information.Secondly,the region information term and the mean value definition of the whole image in the traditional C_V model have been changed.It increases the segmentation ability of rich levels gray image.Finally,to overcome the re-initialization,a penalty term of distance function is added into the model,the progress of re-initialization is combined into the framework model.It can speed up the curve evolution and the segmentation.The experiments show that the model is an effective method for medical image segmentation.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第5期972-977,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61075118 60873033)资助 国家科技支撑计划项目(2007BAH11B02)资助 浙江省自然科学基金项目(Y1100880)资助 浙江省科技计划项目(2009C31106)资助
关键词 水平集方法 C_V模型 重新初始化 医学图像分割 level set method C_V model re-initialization medical image segmentation
  • 相关文献

参考文献4

二级参考文献38

共引文献53

同被引文献39

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2冯林,管慧娟,孙焘,滕弘飞.基于分水岭变换和核聚类算法的图像分割[J].大连理工大学学报,2006,46(6):851-856. 被引量:6
  • 3Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,2(1):321-331. 被引量:1
  • 4Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 5Vese L,Chan T.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(1):271-293. 被引量:1
  • 6Li Chunming,Xu Chenyang,Gui Changfeng.Level set evolution without re-initialization:a new variational formulation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:430-436. 被引量:1
  • 7Li Chunming,Kao C Y,Gore J C,et al.Implicit active contours driven by local binary fitting energy[C]//IEEE Conference on Computer Vision and Pattern Recognition.Minnesota,USA:[s.n.],2007:1-7. 被引量:1
  • 8Lei He,Zhigang Peng,Bryan Everding,Xun Wang,Chia Y. Han,Kenneth L. Weiss,William G. Wee.A comparative study of deformable contour methods on medical image segmentation[J].Image and Vision Computing.2007(2) 被引量:2
  • 9Bing Nan Li,Chee Kong Chui,Stephen Chang,S.H. Ong.Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation[J].Computers in Biology and Medicine.2010(1) 被引量:1
  • 10Ze-Xuan Ji,Quan-Sen Sun,De-Shen Xia.A framework with modified fast FCM for brain MR images segmentation[J].Pattern Recognition.2010(5) 被引量:1

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部