期刊文献+

采用粒子群优化粒子滤波的红外目标提取算法 被引量:3

INFRARED TARGET EXTRACTION ALGORITHM BY USING PARTICLE SWARM OPTIMIZATION PARTICLE FILTER
下载PDF
导出
摘要 提出了一种新的基于粒子群优化粒子滤波(PSOPF)的红外目标提取算法,将红外目标提取阈值的计算问题看作系统状态估计问题.在粒子滤波的框架下,建立了关于灰度—方差加权信息熵和像素点灰度值的阈值状态空间,建立了基于粒子群优化算法思想的系统状态转移模型,建立了基于红外目标提取效果评价函数的系统观测模型,它有效综合了红外图像中灰度、信息熵、梯度、像素点的空间位置等信息.最后,以粒子的加权平均估计目标提取的阈值.实验结果表明,该方法是有效且稳健的. A novel infrared target extraction algorithm based on particle swarm optimization particle filter (PSOPF) was proposed. The problem of infrared target extraction was analyzed and solved in the view of state estimation. In the frame- work of particle filter, the threshold state space on the gray-variance weighted information entropy and the gray value of each pixel was established. Particle swarm optimization was introduced to construct the state transition model. The observation model based on extraction results evaluation function was constructed, which integrated gray, entropy, gradient and spatial distribution of pixels. Finally, the weighted average of all the particles was used as target extraction threshold. The experiment results prove that the proposed algorithm is effective and robust.
作者 周越 毛晓楠
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第1期63-68,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60772097) 航空科学基金
关键词 粒子滤波 粒子群优化 目标提取 灰度-方差加权信息熵 particle filter particle swarm optimization target extraction gray-variance weighted information entropy
  • 相关文献

参考文献10

二级参考文献51

共引文献179

同被引文献28

  • 1林国余,张为公.基于进化规划的最大类间方差的图像分割算法[J].传感技术学报,2006,19(1):179-182. 被引量:11
  • 2程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4Gustafsson F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Elee- tronic Systems Magazine, 2010, 25(7): 53-82. 被引量:1
  • 5Khong Wei Leong, Kow Wei Yeang, Chin Yit Kwong, et al. Enhancement of particle filter resam- piing in vehicle tracking via genetic algorithm[C]// Computer Modeling and Simulation ( EMS ), 2012 Sixth UKSim/AMSS European Symposium on. Valetta:IEEE, 2012:243-248. 被引量:1
  • 6Xu B L, Zhu J H, Xu H G. An ant stochastic deci- sion based particle filter and its convergence[J]. Sig- nal Processing, 2010, 90(9): 2731-2748. 被引量:1
  • 7DU M, NAN X M, GUAN L. Monocular human motion tracking by using DE-MC particle filter[J]. IEEE Transactions on Image Processing, 2013, 22 (10) :3852-3865. 被引量:1
  • 8Li H W, Wang J, Su H T. Improved particle filter based on differential evolution [J]. Electronics Let- ters, 2011, 47(19): 1078-1079. 被引量:1
  • 9Zhu G P, Kwong S. Gbest-guided artificial bee colo- ny algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217 (7) : 3166-3173. 被引量:1
  • 10Van Der Merwe R, Doucet A, De Freitas N, et al. The unscented particle filter[R]. UK: Engineering Department, Cambridge University, 2000. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部