期刊文献+

自适应权值的MRF分割与跟踪方法 被引量:3

MRF segmentation and tracking algorithm based on adaptive weight
原文传递
导出
摘要 提出一种基于自适应权值的区域马尔可夫随机场(MRF)分割与跟踪的方法,该方法利用了相邻像素区域的空间相关性,自适应更新系统能量函数中的参数β,可以更准确地分割出运动目标,在此基础上建立分片积分直方图特征模板,并结合Kalm an预测与目标运动方向等信息,进一步提高算法准确性,实现目标匹配跟踪。实验结果表明,本文算法在部分遮挡、光线变化等情况下,能准确实现运动目标分割与跟踪。 The paper proposes a segmentation and tracking method based on adaptively weighted Markov random field (MRF). By using spatial relativity of the adjacent pixel regions, this method adaptively updates the system energy function parameter β, and makes object segmentation more accurate. On this condition, the fragments-based integral histogram feature template is established. And Kalman prediction method is combined with object motion information to improve the algorithm's accuracy and implement matching and tracking. Experiment results proved that this algorithm can accurately settle with the problem of objects segmentation and tracking problem under the case of partial shelter, and illumination change.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第4期572-578,共7页 Journal of Image and Graphics
基金 安徽省科技计划项目(08020303095)
关键词 运动目标跟踪 MRF分割 自适应权值 分片模板 KALMAN预测 积分直方图 moving object tracking MRF segmentation adaptive weight fragment template Kalman prediction integral histogram
  • 相关文献

参考文献10

  • 1詹劲峰,戚飞虎,王海龙.基于时空马尔可夫随机场的运动目标分割技术[J].通信学报,2000,21(11):63-68. 被引量:17
  • 2Zhou Shaohua,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004,13(11):1491-1506. 被引量:1
  • 3Zuo Junyi,Zhao Chunhui,Pan Quan,et al.A novel binary image filtering algorithm based on information entropy[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation.Washington DC,USA:IEEE,2006:10375-10379. 被引量:1
  • 4金芳,李君波,杨勇.基于模板匹配与运动预测的跟踪算法研究[J].微计算机信息,2007,23(19):313-314. 被引量:10
  • 5Porkili F.A fast way to extract histograms in Cartesian spaces[C]//Proceedings of the IEEE Conf.on Computer Vision and Pattern Recognition (CVPR).Washington DC,USA:IEEE Computer Socity,2005:829-836. 被引量:1
  • 6Adam A,Rivlin E,Shimshoni I.Robust fragments-based tracking using the integral histogram[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).Washington,DC,USA:IEEE Computer Soc ity,2006:798-805. 被引量:1
  • 7林开颜,徐立鸿,吴军辉.快速模糊C均值聚类彩色图像分割方法[J].中国图象图形学报(A辑),2004,9(2):159-163. 被引量:74
  • 8Wang D M.Unsupervised video segmentation based on watersheds and temporal tracking[J].IEEE Transactions on Circuits and System for Video Technology,1998,8(5):539-546. 被引量:1
  • 9Yaakov T,Averbuch.A Region-based MRF model for unsupervised segmentation of moving objects in Image sequences[C]//Computer Society Conf.on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Computer Socity,2001:889-896. 被引量:1
  • 10代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169

二级参考文献68

  • 1朱永松,国澄明.基于相关系数的相关跟踪算法研究[J].中国图象图形学报(A辑),2004,9(8):963-967. 被引量:38
  • 2张雷,刘冀伟,王志良.固定场景下的运动检测与运动跟踪[J].微计算机信息,2006(09S):287-289. 被引量:13
  • 3丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 4Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition,2001,34(12) : 2259-2281. 被引量:1
  • 5Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. J. Cybernet,1973,3(3) :32-57. 被引量:1
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York : Plenum Press, 1981. 被引量:1
  • 7Yager Ronald R, Filev Dimitar P. Approximate Clustering Via the Mountain Method [J]. IEEE Transactions on System,Manand Cybern. , 1994,24(8) : 1279-1284. 被引量:1
  • 8Chiu S L. Fuzzy model identification based on cluster estimation[J]. J. Intelligent & Fuzzy Systems, 1994,2(3) : 267-278. 被引量:1
  • 9Xie X L, Beni G. A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelllgnece, 1991,13(8) : 841-847. 被引量:1
  • 10Zahid N, Limouri M, Esseaid A. A new cluster-validity for fuzzy clustering[J]. Pattern Recognition, 1999,32(5):1089-1097. 被引量:1

共引文献266

同被引文献44

  • 1Jain S, Neal R M. A split-merge Markov chain monte carlo pro?cedure for the dirichlet process mixture model[J].Journal of Computational and Graphical Statistics , 2004, 13( I): 158-182. 被引量:1
  • 2Prados-Sure B, Charnorro-MartnezJ, Sanchez D. Region-based fit of color hOI1'lOgeneity measures for fuzzy image segmentation[J]. Fuzzy Sets and Systems, 2007, 158(3): 215-229. 被引量:1
  • 3Kabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[M]. 2nd ed. Chichester: John Wiley & Sons, 1999,43-106. 被引量:1
  • 4Green P 1. ReversibleJump Markov clu ?. in monte carlo computa?tion and bayesian model determination[J]. Biornetrika , 1995, 82(4): 711-732. 被引量:1
  • 5Dryden 1 L, Farnoosh R, Taylor C C. Image segmental ion using Voronoi polygons and MCMC, with application to muscle fibre images[J].Journal of Applied Statistics , 2006, 33(6): 609- 622. 被引量:1
  • 6MllerJ, Skare . Bayesian image analysis with coloured Voronoi tessellation and a view to applications in reservoir model?ing[J]. Statistical Modelling, 2001, 1(3): 213-232. 被引量:1
  • 7Li Y, Li 1. Segmentation ofSAR intensity imagery with a Voronoi tessellation, Bayesian inference, and reversibleJump MCMC al?gorithm[J]. 1 EEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1872-1881. 被引量:1
  • 8Comer M L, Delp E 1. The EM/MPM algorithm for segmentation of texture images: analysis and future experimental results[J]. IEEE Transactions on Image Processing, 2000, 9 (10): 1731- 1744. 被引量:1
  • 9MarroquinJ, Miller S, Poggio T. Probabilistic solution of .u posed problems in computational vision[J].Journal of the American Statistical Assoeiation , 1987,82(397): 76-89. 被引量:1
  • 10Wong A, Mishra A, Zhang W. Stochastic image denoising based on Markov-chain Monte Carlo sampling[J]. Signal Processing, 2011 , 91 (8) : 21 12-2120. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部