摘要
提出一种基于自适应权值的区域马尔可夫随机场(MRF)分割与跟踪的方法,该方法利用了相邻像素区域的空间相关性,自适应更新系统能量函数中的参数β,可以更准确地分割出运动目标,在此基础上建立分片积分直方图特征模板,并结合Kalm an预测与目标运动方向等信息,进一步提高算法准确性,实现目标匹配跟踪。实验结果表明,本文算法在部分遮挡、光线变化等情况下,能准确实现运动目标分割与跟踪。
The paper proposes a segmentation and tracking method based on adaptively weighted Markov random field (MRF). By using spatial relativity of the adjacent pixel regions, this method adaptively updates the system energy function parameter β, and makes object segmentation more accurate. On this condition, the fragments-based integral histogram feature template is established. And Kalman prediction method is combined with object motion information to improve the algorithm's accuracy and implement matching and tracking. Experiment results proved that this algorithm can accurately settle with the problem of objects segmentation and tracking problem under the case of partial shelter, and illumination change.
出处
《中国图象图形学报》
CSCD
北大核心
2011年第4期572-578,共7页
Journal of Image and Graphics
基金
安徽省科技计划项目(08020303095)