期刊文献+

基于冗余小波变换的运动目标检测算法 被引量:1

Moving object detection algorithm based on redundant wavelet transform
下载PDF
导出
摘要 针对传统运动目标检测方法帧差法、光流法等提取运动目标的缺陷与不足,提出了一种新的基于冗余小波变换和DT网格的运动目标检测算法,即在冗余小波域提取特征点生成Delaunay三角形网格,并自适应获得潜在运动区域,从而获得运动目标区域实现运动目标检测.实验结果表明,本文提出的算法可以有效地提取运动目标,效果要好于传统的运动目标检测方法,对于室外交通监控和室内监控的运动目标检测同样适用,取得不错的效果. An object detection method which can be used in indoor and outdoor monitoring is proposed in this paper.Improving shortcomings and disadvantages of moving object extraction in traditional inter-frame difference method,it puts forward a moving object recognition algorithm based on redundant wavelet transform,namely,extraction of feature points in redundant wavelet domain to generate a delaunay triangulation grid and adaptive potential movement area,then moving object area.The experimental results show that the proposed algorithm can effectively extract moving object,which is better than traditional frame difference method.
出处 《河北工业大学学报》 CAS 北大核心 2013年第2期20-23,共4页 Journal of Hebei University of Technology
基金 河北省自然科学基金重点项目(ZD200911)
关键词 冗余小波变换 目标检测 视频挖掘 DT网格 特征点 redundant wavelet transform object detection video mining Delaunay Triangle grid feature points
  • 相关文献

参考文献16

二级参考文献76

  • 1陶毅,龚声蓉,王朝晖.序列图象中运动目标的检测[J].微电子学与计算机,1993,10(11):32-35. 被引量:3
  • 2于成忠,朱骏,袁晓辉.基于背景差法的运动目标检测[J].东南大学学报(自然科学版),2005,35(A02):159-161. 被引量:48
  • 3Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066. 被引量:1
  • 4Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163. 被引量:1
  • 5Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181. 被引量:1
  • 6Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29. 被引量:1
  • 7Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252. 被引量:1
  • 8Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510. 被引量:1
  • 9Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271. 被引量:1
  • 10Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976. 被引量:1

共引文献231

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部