期刊文献+

基于AR模型的盲源分离方法 被引量:6

Blind Separation Based on AR Model
下载PDF
导出
摘要 不同时间结构的平稳随机信号具有不同的模型结构,平稳随机信号可以由白噪声激励一自回归(AR)模型得到,在某种意义上AR模型与线性预测模型等价。因此,在盲源分离中线性预测模型可以作为度量信号分离的测度。为此从信号预测模型的角度出发分析推导了一种新的盲源分离算法,并进行了计算机仿真验证,实验结果表明该算法简单有效,便于工程实现。 Stationary random signals with different temporal structures often have different model structures.And this type of signals can be generated by the white noise through an auto-regressive(AR) model.Since in some sense,the AR model is equivalent to the linear prediction model,and the linear prediction model structure can be served as a measure to identify different signals.Based on the new measure,a novel blind source separation method is proposed and the corresponding simulation is carried out.Simulation results show that the new method is valid,efficient,and easy to implement in practice.
出处 《数据采集与处理》 CSCD 北大核心 2011年第2期162-166,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61062002)资助项目 甘肃省自然科学基金(1014RJZA011)资助项目
关键词 盲源分离 信号模型 线性预测 瑞利熵 blind source separation signal model linear prediction Raleigh entropy
  • 相关文献

参考文献2

二级参考文献17

  • 1Adel B,Karim A.A blind source separation technique using second-order statistics.IEEE Trans.on Signal Processing,1997,45(2):434-444. 被引量:1
  • 2He Zhenya,Yang Luxi,Liu Ju.Blind source separation using cluster-based multivariate density estimation algorithm.IEEE Trans.on Signal Processing,2000,48(2):575-579. 被引量:1
  • 3Taro Y,Hirokawa K,Itoh K.Independent component analysis by transforming a scatter diagram of mixtures of signal.Optics Communications,2000,173(1):107-114. 被引量:1
  • 4Bofill P,Zibulevsky M.Underdetermined blind source separation using sparse representations.Signal Processing,2001,81(11):2353-2362. 被引量:1
  • 5Stone V.Blind source separation using temporal predictability.Neural Computation,2001,13(7):1559-1574. 被引量:1
  • 6Cichocki A,Thawonmas R,Amari S.Sequential blind signal extraction in order specified by stochastic properties.Electronics Letters,1997,33 (1):64-65. 被引量:1
  • 7Li Yuanqing,Wang Jun.Blind extraction of singularly mixed source signals.IEEE Trans.on Neural Networks,2000,11(6):1413-1422. 被引量:1
  • 8Li Yuanqing,Wang Jun.Sequential blind extraction of instantaneously mixed source.IEEE Trans.on Signal Processing,2002,50(5):997-1006. 被引量:1
  • 9Wei Liu,Mandic D P, Cichocki A. A class of novel blind source extraction algorithms based on a linear predictor[C]// ISCAS 2005. Kobe, Japan:[s. n. ]. 2005:3599-3602. 被引量:1
  • 10Haykin Simon. Adaptive filter theory[M]. 3rd Edition. New Jersey:Prentice Hall,1996:5-7. 被引量:1

共引文献11

同被引文献48

  • 1李祥权,崔丽静,陈少平.隐蔽油气藏勘探回顾与展望[J].油气地质与采收率,2005,12(1):30-32. 被引量:14
  • 2Halbouty M T.The deliberate search for the subtle trap[J].AAPG Memoir, 1982,32(3) : 351. 被引量:1
  • 3Liang Y C, Leyman A R, Soong B H. Blind source separation us- ing second-order cyclic-statistics [ C ]. IEEE Conferences on Sig- nal Processing, 1997 : 57-60. 被引量:1
  • 4马建仓,牛奕龙,陈海洋.自信号处理[M].北京:国防工业出版社.2006. 被引量:1
  • 5Morrison G S, Thiruvaran T. Estimating the preci- sion of the likelihood-ratio output o{ a forensic-voice- comparison system [ C ]//Proceedings of Odyssey 2010: The Language and Speaker Recognition Work- shop. Brno, Czech Republic: [s. n. ], 2010. 被引量:1
  • 6Morrison G S. Forensic voice comparison. Expert evidence[M]. Sydney, Australia Thomson Reuters, 2010:99. 被引量:1
  • 7Bonastre J F. Mistral: Open source platform for bio- metrics authentification, version 1.3 [EB/OL]. ht- tp://mistral, univ-avignon, fr/. [-2013-03-07]. 被引量:1
  • 8Morrison G S. Forensic voice comparison and the paradigm shift [J]. Science Justice, 2009,49(4): 298-308. 被引量:1
  • 9Morrison G S. Measuring the validity and reliability of forensic likelihood-ratio systems[J]. Science Justice, 2011,51(3) :91-98. 被引量:1
  • 10Kinoshita Y, Osanai T. Within speaker variation in diphthongal dynamics: What can we compare? [C]//Proeeedings of the llth Australasian Interna- tional Conference on Speech Science Technology.New Zealand, Australia; Australasian Speech Science Technology Association, 2006 112-117. 被引量:1

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部