期刊文献+

基于SVM的驾驶员疲劳检测研究 被引量:3

Driver Fatigue Detection Based on SVM
下载PDF
导出
摘要 疲劳驾驶是导致交通意外的一个重要原因,在车上装一个疲劳检测系统有助于预防交通事故的发生。现实条件下,司机的头和眼睛是不断运动的,使得疲劳特征提取变得比较困难。再加上外部干扰和光线条件的影响,准确判断司机的疲劳状态是一个具有挑战性的问题。介绍了一种利用支持向量机检测驾驶员疲劳状态的方法。首先采集驾驶员的头部视频,然后对视频图像进行处理,提取眼睛、嘴的视觉特征和点头频率变化情况,最后利用支持向量机依据这些特征来判断司机的疲劳状态。通过模拟实验,疲劳检测的准确率达到97.80%,表明该方法适合于驾驶员的疲劳检测。 Driver fatigue is an important factor that causes traffic accidents.It can prevent traffic accidents to install a fatigue detection system in the car.In the real conditions,the driver's head and eyes are in motion,this makes the fatigue feature extraction become more difficult.External interference and the impact of lighting also make it a challenging problem to determine accurately the driver's fatigue.A method to detect driver fatigue with support vector machine is introduced.First,the video of driver's head is captured,and then the video images are processed,features of the eyes,mouth,nodding frequency of head are extracted,at last,support vector machines are used to determine the driver's fatigue status.The experiment results show that fatigue detection accuracy rate reached 97.80%,and the method is suitable for driver fatigue detection.
出处 《科学技术与工程》 2011年第8期1828-1832,共5页 Science Technology and Engineering
关键词 支持向量机 车辆 驾驶员 疲劳监测 support vector machine vehicle driver fatigue detection
  • 相关文献

参考文献11

  • 1Eriksson M, Papanikolopoulos N P. Eye-tracking for detection of driver' s fatigue. Pro-ceeding of the In IEEE Conference on Intelligent Transportation Systems, 1997 : 314-319. 被引量:1
  • 2刘芳.基于视频的驾驶员疲劳驾驶实时监测系统的设计和研究,杭州:浙江工业大学学位论文,2009,5. 被引量:1
  • 3毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 4郑培,宋正河,周一鸣.机动车驾驶员驾驶疲劳测评方法的研究状况及发展趋势[J].中国农业大学学报,2001,6(6):101-105. 被引量:42
  • 5Columbia DVMM Research Lab. Columbia image splicing detection evaluation dataset, http//www, ee. columbia, edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSpliced-DataSet, htm. [ 2008-03-20 ]. 被引量:1
  • 6Byun H, Lee S W. Applications of support vector machines for pattern recognition: a survey. Lee S W, Verri A Eds. SVM. LNCS2388, 2002:213-236. 被引量:1
  • 7Dong Wen-Hui, Wu Xiao-Juan. Driver fatigue detection based on the distance of eyelid, Proc IEEE Int, Workshop VLSI Design & Video Tech ,2005 ;28-30. 被引量:1
  • 8Viola P,Jones M J. Rapid object detection using a boosted cascade of simple features. IEEE CVPR,2001. 被引量:1
  • 9Jaffar M A, Hussain A, Mirza A M. et al . Fuzzy entropy and morphology based fully automated segmentation of lungs from CT Scan images. International Journal of Innovative Computing, Information and Control ( IJICIC ) ,2009 ;5 (12). 被引量:1
  • 10Hsu C -W, Chang C-C. Lin C-J. A practical guide to support vector classification, http :// www. csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1

二级参考文献35

  • 1向多样化发展的新型手表[J].福建轻纺信息,1995(1):16-16. 被引量:8
  • 2Li S Z,Chu R F,Liao S C.Illumination invariant face recognition using near-infrared images[J].IEEE Trans Pattern Analysis and Machine Intelligence,2007,29(4):627-639. 被引量:1
  • 3Chu Jiang-wei.Driver's eye state detecting method design based on eye geometry feature[C]//2004 IEEE Intelligent Vehicles Symposium, 2004 : 357-362. 被引量:1
  • 4Moreno P, Bernardino A.Gabor parameter selection for local feature detection[C]//Iberian Conference on Pattem Recognition and Image Analysis, 2005 : 11-19. 被引量:1
  • 5Wang Jun,Yin Li-jun.Detecting and tracking eyes through dynamic terrain feature matching[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattem Recognition, 2005 : 78-85. 被引量:1
  • 6Xiong Jin, Jiang Zhao-hui, Liu Jun-wei, et al.Multiple states and joint objects particle filter for eye tracking[C]//Proceedings of SHE-The International Society for Optical Engineering,v 6786, MIPPR 2007,2007,6786. 被引量:1
  • 7周鹏,汽车电器,1998年,8期,27页 被引量:1
  • 8丁玉兰,人机工程学,1991年,125页 被引量:1
  • 9何存道,道路交通心理学,1989年,32页 被引量:1
  • 10Nikolaos P. Vision based detection of driver fatigue[A]. IEEE International Conference on Intelligent Transportation[C],1997.9. 被引量:1

共引文献119

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部