期刊文献+

Rough逻辑系统RSL与模糊逻辑系统Luk 被引量:2

Rough Logic System RSL and Fuzzy Logic System ■uk
下载PDF
导出
摘要 基于rough集的偶序对(下近似,上近似)表示,通过改进基于rough集的逻辑系统L的方法引入新的rough蕴涵算子,研究了它的基本性质,并将其进一步拓广到一般正则双Stone代数中,证明了添加新蕴涵算子后的正则双Stone代数构成MV-代数。其次,以上述结果为背景,建立了一个基于rough蕴涵的逻辑形式系统RSL,其语义是扩展的rough双Stone代数;同时,引入RSL-代数的概念,并证明了逻辑系统RSL的标准完备性定理(基于由近似空间确定的标准RSL-代数)。最后,说明了逻辑系统RSL是著名模糊逻辑系统Luk(即Lukasiewicz连续值逻辑系统)的语义扩张,从而从一个特殊的视角揭示了rough集与模糊逻辑的联系。 From the description of the pairs (low approximation, upper approximation) of rough sets, a new rough implication operator is introduced by modifying the method by Ref. [1], some algebraic properties of this rough implication operator are investigated, and these results are generalized to regular double Stone algebras and the following important result is proved: the regular double Stone algebra with the new rough implication operator is an MV-algebra. Further more a rough logic system RSL is constructed, its schematic is rough sets and extensional regular double Stone algebras. The completeness theorem of RSL is proved by introducing the notion of RSL-algebra. Finally, the relationship between rough logic RSL and fuzzy logic Luk (continuous-valued tukasiewicz logic system) is discussed.
作者 张小红 祝峰
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第2期296-302,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60775038 60873077) 宁波市自然科学基金(2009A610078)
关键词 模糊逻辑 正则双Stone代数 rough蕴涵 ROUGH逻辑 ROUGH集 fuzzy logic regular double Stone algebra rough implication rough logic rough set
  • 相关文献

参考文献24

  • 1PAWLAK Z.Rough sets-theoretical aspects of reasoning about data[M].Dordrecht:Kluwer Academic Publishers,1991. 被引量:1
  • 2D(U)TSCH I.A logic for rough sets[J].Theoretical Computer Science,1997,179:427-436. 被引量:1
  • 3BANERJEE M.Logic for rough truth[J].Fundamenta Informaticae,2006,71:139-151. 被引量:1
  • 4刘清.Rough集及Rough推理[M].2版.北京:科学出版社,2003. 被引量:2
  • 5DAI Jian-hua.Logic for rough sets with rough double stone algebraic semantics[C]//Proceedings of Tenth Interntional Conference on RSFDGrC 2005.Regina,Canada:Springer,2005:141-148. 被引量:1
  • 6CATTANEO G,CIUCCI D.Algebraic structures for rough sets[J].Transactions on Rough Sets Ⅱ,LNCS 3135,2004,208-252. 被引量:1
  • 7DUDIOS D,PRADE H.Rough fuzzy sets and fuzzy rough sets[J].International Journal of General Systems,1990,17:191-209. 被引量:1
  • 8YAO Y Y.Combination of rough and fuzzy sets based on α-level ses[C]//Rough Sets and Data Mining:Analysis for Imprecise Data.Boston:Kluwer Academic Publishers,1997:301-321. 被引量:1
  • 9HAJEK P.Metamathematics of fuzzy logic[M].Boston,USA:Kluwer Academic Publishers,1998. 被引量:1
  • 10王国俊著..数理逻辑引论与归结原理[M].北京:科学出版社,2006:258.

二级参考文献6

  • 1Pawlak Z. Rough set [J]. International Journal of Computer and Information Science, 1982, ( 11 ): 341-356. 被引量:1
  • 2Pawlak Z. Rough set: theoretical aspects of reasoning about data[M]. Boston: Kluwer Academic Publishers, 1991: 56-203. 被引量:1
  • 3Yao Y Y. Two views of the theory of rough sets in finite universes [ J ]. International Journal of Approximate Reasoning,1996,(15): 291-317. 被引量:1
  • 4Yao Y Y, Lin T Y. Generalization of rough sets using modal logic[J]. Intelligent Automation and Soft Computing, 1996,(2): 103-120. 被引量:1
  • 5Xu Y,Ren D,Qin K Y,et al.Lattice-valued logic[M].Heidelber:Springer-Verlag,2003.27-57. 被引量:1
  • 6吴望名.参数Kleene系统中的广义重言式[J].模糊系统与数学,2000,14(1):1-7. 被引量:73

共引文献22

同被引文献21

  • 1鞠实儿.论逻辑学发展的方向[J].中山大学学报(社会科学版),2003,43(S1):3-8. 被引量:24
  • 2王国俊,宋建社.命题逻辑中的程度化方法[J].电子学报,2006,34(2):252-257. 被引量:67
  • 3Molodtsov D.Soft set theory-first results[J].Computers and Mathematics with Applications, 1999,37(4/5) : 19-31. 被引量:1
  • 4Maji P K,Biswas R,Roy A R.Soft set theory[J].Computers and Mathematics with Applications, 2003,45:555-562. 被引量:1
  • 5Ali M I, Feng F, Liu X, et al.On some new operations in soft set theory[J].Computers and Mathematics with Applications, 2009, 57:1547-1553. 被引量:1
  • 6Qin K, Hong Z.On soft equality[J].Joumal of Computational and Applied Mathematics, 2010,234 : 1347-1355. 被引量:1
  • 7Aktas H, Cagman N.Soft sets and soft groups[J].Information Sciences, 2007,177: 2726-2735. 被引量:1
  • 8Acar H,Koyuncu F,Tanay B.Soft sets and soft rings[J].Computers and Mathematics with Applications, 2010,59: 3458-3463. 被引量:1
  • 9Feng F,Jun Y B,Zhao X Z.Soft semirings[J].Computers and Mathematics with Applications, 2008,56: 2621-2628. 被引量:1
  • 10Sun Q M,Zhang Z L,Liu J.Soft sets and soft modules[C]//LNCS: Rough Sets and Knowledge Technology,2008,5009:403-409. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部