期刊文献+

KAM Type-Theorem for Lower Dimensional Tori in Random Hamiltonian Systems

KAM Type-Theorem for Lower Dimensional Tori in Random Hamiltonian Systems
下载PDF
导出
摘要 In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems. In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.
作者 LI YONG XU LU
机构地区 College of Mathematics
出处 《Communications in Mathematical Research》 CSCD 2011年第1期81-96,共16页 数学研究通讯(英文版)
基金 Partially supported by the SFC(10531050,10225107)of China the SRFDP(20040183030) the 985 program of Jilin University
关键词 random Hamiltonian system KAM type theorem Cantor fragment of invariant tori random Hamiltonian system, KAM type theorem, Cantor fragment of invariant tori
  • 相关文献

参考文献25

  • 1Kolmogorov, A. N., On the conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk. SSSR, 98(1954), 525-530. 被引量:1
  • 2Arnold, V. I., Proof of A. N. Kolmogorov's theorem on the preservation of quasi periodic motions under small perturbations of the Hamiltonian, Uspekhi. Mat. USSR, 18(1963), 13-40. 被引量:1
  • 3Moser, J., On invariant curves of area preserving mappings of an annulus, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl, 2(1962), 1-20. 被引量:1
  • 4Melnikov, V. K., On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet. Math. Dokl., 6(1965), 1592-1596. 被引量:1
  • 5Melnikov, V. K., A family of conditionally periodic solutions of a Hamiltonian system, Soviet. Math. Dokl., 9(1968), 882-886. 被引量:1
  • 6Chierchia, L. and Qian, D. B., Moser's theorem for lower dimensional tori, J. Differential Equations, 206(2004), 55-93. 被引量:1
  • 7Gallavotti, G. and Gentile, G., Hyperbolic low-dimensional invariant tori and summations of divergent series, Comm. Math. Phys., 227(2002), 421-460. 被引量:1
  • 8Gentile, C., Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theorem Dynamical Systems, 27(2007), 427-457. 被引量:1
  • 9Han, Y., Li, Y. and Yi, Y., Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations, 227(2006), 670-691. 被引量:1
  • 10Jorba, A. and Villanueva, J., On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci., 7(1997), 427-473. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部