期刊文献+

A KAM-type Theorem for Generalized Hamiltonian Systems

A KAM-type Theorem for Generalized Hamiltonian Systems
下载PDF
导出
摘要 In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type. In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.
出处 《Communications in Mathematical Research》 CSCD 2009年第1期37-52,共16页 数学研究通讯(英文版)
基金 Partially supported by the Talent Foundation (522-7901-01140418) of Northwest A & FUniversity.
关键词 KAM theory invariant tori generalized Hamiltonian system KAM theory, invariant tori, generalized Hamiltonian system
  • 相关文献

参考文献24

  • 1Kolmogorov, A. N., On quasi-periodic motions under small perturbations of the Hamiltonian, Dokl. Akad. Nauk UzSSR, 98(1954), 1-20. 被引量:1
  • 2Arnold, V. I., Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 18(1963), 9-36. 被引量:1
  • 3Moser, J., On invariant curves of area preserving mapping of an annulus, Nachr. Akad. Wiss. Gottingen Math.-Phys. K1. Ⅱ, (1962), 1-20. 被引量:1
  • 4Eliasson, L. H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa GI. Sci. Ser. Ⅵ., 15(1988), 115-147. 被引量:1
  • 5Kuksin, S. B., Nearly Integrable Infinite Dimensional Hamiltonian Systems, Lecture Notes in Math. 1556, Springer-Verlag, Berlin, 1993. 被引量:1
  • 6Poschel, J., On elliptic lower dimensional tori in Hamiltonian systems, Math. Z., 202(1989), 559-608. 被引量:1
  • 7Chierchia, L. and Gallavotti, G., Drift and diffusion in phase space, Ann. Inst. H. Poincare Phy. Theor., 69(1994), 1-144. 被引量:1
  • 8Eliasson, L. H., Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Brasil. Mat., 25(1994), 57-76. 被引量:1
  • 9Graff, S. M., on the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15(1974), 1-69. 被引量:1
  • 10Rudnev, M. and Wiggins, S., KAM theory near multiplicity one resonant surfaces in perturbations of a priori stable Hamiltonian systems, J. Nonlinear Sci., 7(1997), 177-209. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部