期刊文献+

基于应力比值法的V形切口应力强度因子分析 被引量:3

Stress Intensity Factor Analysis of V-notches based on A Stress Ratio Method
下载PDF
导出
摘要 本文基于有限元分析技术建立了一种应力比值方法,用于计算V形切口的应力强度因子。该方法不需要在V形切口尖端采用反映应力奇异性的奇异单元。求解时,首先给定参考问题的广义应力强度因子,然后利用待求问题的应力值与参考问题的应力值之间的比值来求解待求问题的广义应力强度因子。算例采用切口尖端应力方法分析了平板的V形切口问题。计算结果表明,该方法计算精度较高,能够方便地用于求解相关的工程问题。 A finite element method(FEM) called as stress ratio method was developed to solve generalized stress intensity factors of V-notches.The method doesn't need special elements accounting for the analytical form of a singularity.The stress values at the notch tip calculated by FEM were used and the stress intensity factors of sharp angular corners were evaluated from the ratio of stress values between a given problem and a reference one.As application the NTSM was used to solve GSIFs of V-notches in 2D plates.All numerical examples prove that the present method is effective to deal with sharp angular notch problems.
出处 《力学季刊》 CSCD 北大核心 2011年第1期98-103,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金项目(51065008) 九州工业大学外国研究人员奖学金项目 江西省教育厅科研项目(GJJ10444)
关键词 弹性材料 V切口 应力强度因子 应力比值 elasticity V-notch stress intensity factor stress ratio
  • 相关文献

参考文献11

  • 1Chen D H,Nisinani H. Stress intensity factors K 1.λ1 and K 1 ,λ2 of a strip with a V-notched single notch under tension or in-plane bending[J]. Trans Jpn Soc Mech Eng A,1993,59(560) :187 -192. 被引量:1
  • 2Noda N A,Takase Y. Generalized stress intensity factors of V- shaped notch in a round bar under torsion, tension and bending[J]. Eng Fract Mech,2003,70: 1447- 1466. 被引量:1
  • 3Sinclair G B,Okajima M,Griffin J H. Path independent integrals for computing stress intensity factors at sharp notches in elastic plates [J]. Int J Num MethEng,1984,20: 999-1008. 被引量:1
  • 4Tan M A,Meguid S A. Analysis of bimaterial notchs using a singular finite element[J]. Int J Fract, 1997,88:373 -391. 被引量:1
  • 5Tong P,Pian T H H. On the convergence of the FEM for problems with singularity[J]. Int J Solids Structures,1973,9:313 -321. 被引量:1
  • 6Chen M C,Sze K Y. A novel hybrid finite element analysis of bimaterial notch problems[J]. Eng Fract Mech,2001,68:1463 - 1476. 被引量:1
  • 7Munz D, Yang Y Y. Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loading[J]. ASME J Appl Mech,1992,59:857 - 861. 被引量:1
  • 8Treifi M, 0yadiji S O,Tsang D K L. Computation of modes I and 1I stress intensity factors of sharp notched plates under in-plane shear and bending loading by the fractal-like finite element method[J]. Int J Solids Structures,2008,45(25 26) : 6468 - 6484. 被引量:1
  • 9刘小妹,刘一华,梁拥成,詹春晓.复合型V形切口脆断的应变能密度因子准则[J].机械强度,2008,30(2):288-292. 被引量:9
  • 10牛忠荣,程长征,胡宗军,叶建乔.V形切口应力强度因子的一种边界元分析方法[J].力学学报,2008,40(6):849-857. 被引量:9

二级参考文献20

共引文献15

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部