摘要
大坝安全监测的主要目的是了解大坝坝体及基础的实际工作状况,尽早发现异常现象并进行必要的处理以确保大坝安全运行。监测数据的采集与处理是大坝安全监测工作的重要环节,在处理监测数据时往往会遇到粗大误差。在充分收集、分析国内外相关研究成果的基础上,依托冶勒水电站、宝珠寺水电站等实际工程,重点研究了几种粗差识别方法,探讨了其适用范围。通过对传统粗差分析方法的改进,提出了适用于大坝安全监测数据预处理的方法,即引入数学模型计算残差,通过残差来判断原始数据系列中的粗差。
The main purpose of dam safety monitoring is to know the working conditions of dams and their bases in order to find abnormal phenomena as early as possible and make some necessary adjustments to ensure the safety of dams.Collecting and processing monitoring data with many errors to be dealt with are an important part of dam safety monitoring.Based on full collection,this paper analyzes relevant research results,relies on Yele and Baozhushi Stations,mainly studies several methods of error analysis and the scope of their applications.And on this basis,it overcomes the shortcomings of the traditional method of outliers identifying and proposes a method of data preprocessing applicable to dam safety monitoring data analysis.The mathematical model is used to calculate residuals which can be used to determine the original data is gross error.
出处
《中国农村水利水电》
北大核心
2011年第3期102-105,112,共5页
China Rural Water and Hydropower
关键词
粗差识别
大坝安全检测
样本容量
数学模型
残差
outlier identification
dam safety monitoring
sample size
mathematical model
residual